×

Density estimation for mixed Euclidean and non-Euclidean data in the presence of measurement error. (English) Zbl 1520.62011

Summary: In this paper, we study density estimation for mixed Euclidean and non-Euclidean variables that are subject to measurement errors. This problem is largely unexplored in statistics. We develop a new deconvolution density estimator and derive its finite-sample properties. We also derive its asymptotic properties including the rate of convergence in various modes and the asymptotic distribution. For the derivation, we apply Fourier analysis on topological groups, which has not been well used in statistics. We provide full practical details on the implementation of the estimator as well as several simulation studies and real data analysis.

MSC:

62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference

Software:

Wrapped
Full Text: DOI

References:

[1] Anderson, D. N., A multivariate Linnik distribution, Statist. Probab. Lett., 14, 333-336 (1992) · Zbl 0754.60022
[2] Applebaum, D., Probability on Compact Lie Groups (2014), Springer International Publishing Switzerland · Zbl 1302.60007
[3] Belomestny, D.; Goldenshluger, A., Density deconvolution under general assumptions on the distribution of measurement errors, Ann. Statist., 49, 615-649 (2021) · Zbl 1473.62115
[4] Berestovskiĭ, V. N.; Svirkin, V. M., The Laplace operator on normal homogeneous Riemannian manifolds, Siberian Adv. Math., 20, 231-255 (2010) · Zbl 1249.53049
[5] Bertrand, A.; Van Keilegom, I.; Legrand, C., Flexible parametric approach to classical measurement error variance estimation without auxiliary data, Biometrics, 75, 297-307 (2019) · Zbl 1436.62511
[6] Bhattacharya, A.; Dunson, D., Nonparametric Bayesian density estimation on manifolds with applications to planar shapes, Biometrika, 97, 851-865 (2011) · Zbl 1204.62053
[7] Dattner, I.; Goldenshluger, A.; Juditsky, A., On deconvolution of distribution functions, Ann. Statist., 39, 2477-2501 (2011) · Zbl 1232.62056
[8] Dattner, I.; Reiss, M.; Trabs, M., Adaptive quantile estimation in deconvolution with unknown error distribution, Bernoulli, 22, 143-192 (2016) · Zbl 1388.62095
[9] Delaigle, A.; Hall, P., On optimal kernel choice for deconvolution, Statist. Probab. Lett., 76, 1594-1602 (2006) · Zbl 1099.62035
[10] Delaigle, A.; Hall, P.; Meister, A., On deconvolution with repeated measurements, Ann. Statist., 36, 665-685 (2008) · Zbl 1133.62026
[11] Diaconis, P., (Group Representations in Probability and Statistics. Group Representations in Probability and Statistics, Volume 11 of Institute of Mathematical Statistics Lecture Notes - Monograph Series (1988), Institute of Mathematical Statistics) · Zbl 0695.60012
[12] Efromovich, S., Density estimation for the case of supersmooth measurement error, J. Amer. Statist. Assoc., 92, 526-535 (1997) · Zbl 0890.62027
[13] Etingof, P.; Goldberg, O.; Hensel, S.; Liu, T.; Schwendner, A.; Vaintrob, D.; Yudovina, E., Introduction to Representation Theory (2011), American Mathematical Society · Zbl 1242.20001
[14] Fan, J., On the optimal rates of convergence for nonparametric deconvolution problems, Ann. Statist., 19, 1257-1272 (1991) · Zbl 0729.62033
[15] Fan, J., Asymptotic normality for deconvolution kernel density estimators, Sankhya, 53, 97-110 (1991) · Zbl 0729.62034
[16] Fan, J.; Truong, Y. K., Nonparametric regression with errors in variables, Ann. Statist., 21, 1900-1925 (1993) · Zbl 0791.62042
[17] Faraut, J., Analysis on Lie Groups (2008), Cambridge University Press · Zbl 1147.22001
[18] Folland, G. B., A Course in Abstract Harmonic Analysis (2016), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton · Zbl 1342.43001
[19] García-Portugués, E., Exact risk improvement of bandwidth selectors for kernel density estimation with directional data, Electron. J. Stat., 7, 1655-1685 (2013) · Zbl 1327.62241
[20] García-Portugués, E.; Crujeiras, R. M.; González-Manteiga, W., Exploring wind direction and SO_2 concentration by circular-linaer density estimation, Stoch. Environ. Res. Risk Assess., 27, 1055-1067 (2013)
[21] García-Portugués, E.; Crujeiras, R. M.; González-Manteiga, W., Kernel density estimation for directional-linear data, J. Multivariate Anal., 121, 152-175 (2013) · Zbl 1328.62232
[22] García-Portugués, E.; Crujeiras, R. M.; González-Manteiga, W., Central limit theorems for directional and linear random variables with applications, Statist. Sinica, 25, 1207-1229 (2015) · Zbl 1415.62014
[23] Healy, D. M.; Hendriks, H.; Kim, P. T., Spherical deconvolution, J. Multivariate Anal., 67, 1-22 (1998) · Zbl 1126.62346
[24] Hendriks, H., Nonparametric estimation of a probability density on a Riemannian manifold using Fourier expansions, Ann. Statist., 18, 832-849 (1990) · Zbl 0711.62036
[25] Hielscher, R., Kernel density estimation on the rotation group and its application to crystallographic texture analysis, J. Multivariate Anal., 119, 119-143 (2013) · Zbl 1277.62105
[26] Huckemann, S.; Kim, P. T.; Koo, J.-Y.; Munk, A., Möbius deconvolution on the hyperbolic plane with application to impedance density estimation, Ann. Statist., 38, 2465-2498 (2010) · Zbl 1203.62055
[27] Jeon, J. M.; Park, B. U.; Ingrid, I., Additive regression for non-Euclidean responses and predictors, Ann. Statist., 49, 2611-2641 (2021) · Zbl 1486.62109
[28] Jeon, J. M.; Park, B. U.; Ingrid, I., Nonparametric regression on Lie groups with measurement errors, Ann. Statist., 50, 2973-3008 (2022) · Zbl 1539.62110
[29] Johannes, J., Deconvolution with unknown measurement error distribution, Ann. Statist., 37, 2301-2323 (2009) · Zbl 1173.62018
[30] Johannes, J.; Schwarz, M., Adaptive circular deconvolution by model selection under unknown error distribution, Bernoulli, 19, 1576-1611 (2013) · Zbl 1280.62044
[31] Johnson, R. A.; Wehrly, T. E., Some angular-linear distributions and related regression models, J. Amer. Statist. Assoc., 73, 602-606 (1978) · Zbl 0388.62059
[32] Jost, J., Riemannian Geometry and Geometric Analysis (2011), Springer Berlin: Springer Berlin Heidelberg · Zbl 1227.53001
[33] Kappus, J.; Mabon, G., Adaptive density estimation in deconvolution problems with unknown error distribution, Electron. J. Stat., 8, 2879-2904 (2014) · Zbl 1308.62074
[34] Katznelson, Y., An Introduction to Harmonic Analysis (2004), Cambridge University Press · Zbl 0169.17902
[35] Kim, P. T., Deconvolution density estimation on SO(N), Ann. Statist., 26, 1083-1102 (1998) · Zbl 0929.62042
[36] Kim, P. T.; Koo, J.-Y., Asymptotic minimax bounds for stochastic deconvolution over groups, IEEE Trans. Inform. Theory, 54, 289-298 (2008) · Zbl 1304.94012
[37] Kim, P. T.; Richards, D. St. P., Deconvolution density estimation on compact Lie groups, Contemp. Math., 287, 155-171 (2001) · Zbl 1020.62029
[38] Kotz, S.; Balakrishnan, N.; Johnson, N. L., Continuous Multivariate Distributions, Volume 1: Models and Applications (2019), Wiley-Interscience
[39] Kotz, S.; Kozubowski, T. J.; Podgórski, K., The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering and Finance (2001), Birkhäuser: Birkhäuser Boston · Zbl 0977.62003
[40] Kotz, S.; Nadarajah, S., Multivariate T-Distributions and their Applications (2004), Cambridge University Press · Zbl 1100.62059
[41] Krishnamoorthy, A. S.; Parthasarathy, M., A multivariate gamma-type distribution, Ann. Math. Stat., 22, 549-557 (1951) · Zbl 0045.07102
[42] Leoń, C. A.; Massé, J.-C.; Rivest, L.-P., A statistical model for random rotations, J. Multivariate Anal., 97, 412-430 (2006) · Zbl 1085.62066
[43] Lesosky, M.; Kim, P. T.; Kribs, D. W., Regularized deconvolution on the 2D-euclidean motion group, Inverse Problems, 24, Article 055017 pp. (2008) · Zbl 1284.43007
[44] Luo, Z.-M.; Kim, P. T.; Kim, T. Y.; Koo, J.-Y., Deconvolution on the euclidean motion group SE(3), Inverse Problems, 27, Article 035014 pp. (2011) · Zbl 1214.62041
[45] Mardia, K. V.; Jupp, P. E., Directional Statistics (1999), John Wiley & Sons, Inc
[46] Marron, J. S.; Alonso, A. M., Overview of object oriented data analysis, Biometical J., 5, 732-753 (2014) · Zbl 1309.62008
[47] Masry, E., Strong consistency and rates for deconvolution of multivariate densities of stationary processes, Stochastic Process. Appl., 47, 53-74 (1993) · Zbl 0797.62071
[48] Masry, E., Asymptotic normality for deconvolution estimators of multivariate densities of stationary processes, J. Multivariate Anal., 44, 47-68 (1993) · Zbl 0783.62065
[49] Meister, A., Deconvolution Problems in Nonparametric Statistics (2009), Springer-Verlag Berlin Heidelberg · Zbl 1178.62028
[50] Myers, D. F., Pointwise and uniform convergence of Fourier series on SU(2) (2016), Missouri University of Science and Technology, (Ph.D. thesis)
[51] Nadarajah, S. J.; Zhang, Y., Wrapped: An R package for circular data, PLoS ONE, 12, Article e0188512 pp. (2017)
[52] Oliveira, M.; Crujeiras, R. M.; Rodríguez-Casal, A., A plug-in rule for bandwidth selection in circular density estimation, Comput. Statist. Data Anal., 56, 3898-3908 (2012) · Zbl 1255.62106
[53] Pewsey, A.; García-Portugués, E., Recent advances in directional statistics, Test, 30, 1-58 (2021) · Zbl 1474.62467
[54] Qui, Y.; Nordman, D. J.; Vardeman, S. B., A wrapped trivariate normal distribution and Bayes inference for 3-D rotations, Statist. Sinica, 24, 897-917 (2014) · Zbl 1285.62059
[55] Schwarz, M.; Van Bellegem, S., Consistent density deconvolution under partially known error distribution, Statist. Probab. Lett., 80, 236-241 (2010) · Zbl 1180.62052
[56] Sei, T.; Shibata, H.; Takemura, A.; Ohara, K.; Takayama, N., Properties and applications of Fisher distribution on the rotation group, J. Multivariate Anal., 116, 440-445 (2013) · Zbl 1283.60011
[57] Söhl, J.; Trabs, M., A uniform central limit theorem and efficiency for deconvolution estimators, Electron. J. Stat., 6, 2486-2518 (2012) · Zbl 1295.62034
[58] Stefanski, L. A.; Carroll, R. J., Deconvolving kernel density estimators, Statistics, 21, 169-184 (1990) · Zbl 0697.62035
[59] Vollrath, A., The nonequispaced fast SO(3) Fourier transform, generalisations and applications (2010), Universität Lübeck, (Ph.D. thesis)
[60] Walker, P. L., Lipschitz classes on finite dimensional groups, Math. Proc. Camb. Phil. Soc., 66, 31-38 (1969) · Zbl 0176.44801
[61] Wang, W.; Lee, T., Matrix Fisher-Gaussian distribution on SO(3)×\( \mathbb{R}^n\) and Bayesian attitude estimation, IEEE Trans. Automat. Control, 67, 2175-2191 (2022) · Zbl 1537.93733
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.