×

Mapping the surgery exact sequence for topological manifolds to analysis. (English) Zbl 1408.57033

Summary: In this paper we prove the existence of a natural mapping from the surgery exact sequence for topological manifolds to the analytic surgery exact sequence of Higson and Roe. This generalizes the fundamental result of N. Higson and J. Roe [\(K\)-Theory 33, No. 4, 277–299 (2004; Zbl 1083.19002); \(K\)-Theory 33, No. 4, 301–324 (2004; Zbl 1083.19003); \(K\)-Theory 33, No. 4, 325–346 (2004; Zbl 1085.19002)], but in the treatment given by P. Piazza and T. Schick [Ann. K-Theory 1, No. 2, 109–154 (2016; Zbl 1335.46063)], from smooth manifolds to topological manifolds. Crucial to our treatment is the Lipschitz signature operator of Teleman.
We also give a generalization to the equivariant setting of the product defined by P. Siegel in his Ph.D. thesis [Homological calculations with analytic structure groups. Pennsylvania State University (2012)]. Geometric applications are given to stability results for rho classes. We also obtain a proof of the APS delocalized index theorem on odd dimensional manifolds, both for the spin Dirac operator and the signature operator, thus extending to odd dimensions the results of Piazza and Schick [loc. cit.]. Consequently, we are able to discuss the mapping of the surgery sequence in all dimensions.

MSC:

57R67 Surgery obstructions, Wall groups
19J25 Surgery obstructions (\(K\)-theoretic aspects)
19K35 Kasparov theory (\(KK\)-theory)
19K56 Index theory
58J22 Exotic index theories on manifolds

References:

[1] M. F. Atiyah and I. M. Snger, The index of elliptic operators, I. Ann. Math.
[2] Baaj, S. and Julg, P., Théorie bivariante de Kasparov et opérateurs non bornés dans les \(C^\ast \)-modules hilbertiens, C. R. Acad. Sci. Paris Sér. I Math.296 (1983) 875-878. · Zbl 0551.46041
[3] Bunke, U., A K-theoretic relative index theorem and Callias-type Dirac operators, Math. Ann.303 (1995) 241-279. · Zbl 0835.58035
[4] Higson, N. and Roe, J., Analytic K-Homology (Oxford Univ. Press, 2000). · Zbl 0968.46058
[5] Higson, N. and Roe, J., Mapping surgery to analysis, I. Analytic signatures, K-Theory33 (2005) 277-299. · Zbl 1083.19002
[6] Higson, N. and Roe, J., Mapping surgery to analysis, II. Geometric signatures, K-Theory33 (2005) 301-324. · Zbl 1083.19003
[7] Higson, N. and Roe, J., Mapping surgery to analysis, III. Exact sequences, K-Theory33 (2005) 325-346. · Zbl 1085.19002
[8] Hilsum, M., Signature operator on Lipschitz manifolds and unbounded Kasparov bimodules, in Operator Algebras and Their Connections with Topology and Ergodic Theory (Buşteni, 1983), , Vol. 1132 (Springer, 1985), pp. 254-288. · Zbl 0602.46069
[9] Hilsum, M., Fonctorialité en K-théorie bivariante pour les variétés lipschitziennes, K-Theory3 (1989) 401-440. · Zbl 0702.57008
[10] Hilsum, M., L’invariant \(\eta\) pour les variétés lipschitziennes, J. Diff. Geom.55 (2000) 1-41. · Zbl 1036.58022
[11] Hilsum, M. and Skandalis, G., Invariance par homotopie de la signature à coefficients dans un fibré presque plat, J. Reine Angew. Math.423 (1992) 73-99. · Zbl 0731.55013
[12] Jensen, K. K. and Thomsen, K., Elements of \(K K\)-Theory, Mathematics: Theory & Applications (Birkhäuser, 1991). · Zbl 1155.19300
[13] Karoubi, M., K-theory, an elementary introduction, in Cohomology of Groups and Algebraic K-Theory, , Vol. 12 (Int. Press, 2010), pp. 197-215. · Zbl 1196.19001
[14] Kasparov, G. G., Equivariant \(K K\)-theory and the Novikov conjecture, Invent. Math.91 (1988) 147-201. · Zbl 0647.46053
[15] Lance, E. C., Hilbert \(C^\ast \)-Modules, , Vol. 210 (Cambridge Univ. Press, 1995). · Zbl 0822.46080
[16] Piazza, P. and Schick, T., Bordism, rho-invariants and the Baum-Connes conjecture, J. Noncommut. Geom.1 (2007) 27-111. · Zbl 1158.58012
[17] P. Piazza and T. Schick, The surgery exact sequence, K-theory and the signature operator, arXiv:1309.4370v1. · Zbl 1335.46063
[18] Piazza, P. and Schick, T., Rho-classes, index theory and Stolz’ positive scalar curvature sequence, J. Topol.7 (2014) 965-1004. · Zbl 1320.58012
[19] Roe, J., Elliptic Operators, Topology and Asymptotic Methods, , Vol. 179 (Longman Scientific & Technical, John Wiley & Sons, 1988). · Zbl 0654.58031
[20] Roe, J., Comparing analytic assembly maps, Quart. J. Math.53 (2002) 241-248. · Zbl 1014.46045
[21] P. Siegel, Homological calculations with analytic structure groups, Ph.D. thesis, 2012.
[22] G. Skandalis, On the strong Ext bifunctor, http://webusers.imj-prg.fr/\( \sim\) georges.skandalis/Publications/StrongExt.pdf.
[23] Stolz, S., Positive scalar curvature metrics—existence and classification questions, in Proceedings of the International Congress of Mathematicians (Zürich, 1994), Vols. 1, 2 (Birkhäuser, 1995), pp. 625-636. · Zbl 0848.57021
[24] Sullivan, D. and Teleman, N., An analytic proof of Novikov’s theorem on rational Pontrjagin classes, Inst. Hautes Études Sci. Publ. Math.58 (1983) 79-81. · Zbl 0531.58045
[25] Sullivan, D., Hyperbolic geometry and homeomorphisms, in Geometric Topology Proc. Georgia Topology Conf., Athens, Ga., 1977 (Academic Press, 1979), pp. 543-555. · Zbl 0478.57007
[26] Teleman, N., The index of signature operators on Lipschitz manifolds, Inst. Hautes Études Sci. Publ. Math.58 (1983) 39-78. · Zbl 0531.58044
[27] Teleman, N., The index theorem for topological manifolds, Acta Math.153 (1984) 117-152. · Zbl 0547.58036
[28] Tu, J. L., La conjecture de Novikov pour les feuilletages hyperboliques, K-Theory16 (1999) 129-184. · Zbl 0932.19005
[29] Tu, J.-L., The gamma element for groups which admit a uniform embedding into Hilbert space, in Recent Advances in Operator Theory, Operator Algebras, and Their Applications, , Vol. 153 (Birkhäuser, 2005), pp. 271-286. · Zbl 1074.46049
[30] Tukia, P. and Väisälä, J., Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn. Ser. A I Math.6 (1981) 303-342. · Zbl 0448.30021
[31] Wahl, C., Product formula for Atiyah-Patodi-Singer index classes and higher signatures, J. K-Theory6 (2010) 285-337. · Zbl 1220.19005
[32] Wahl, C., Higher \(\rho \)-invariants and the surgery structure set, J. Topol.6 (2013) 154-192. · Zbl 1314.19006
[33] Weinberger, S. and Yu, G., Finite part of operator K-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds, Geom. Topol.19 (2015) 2767-2799. · Zbl 1328.19011
[34] Z. Xie and G. Yu, Higher rho invariants and the moduli space of positive scalar curvature metrics, arXiv:1310.1136. · Zbl 1355.53029
[35] Xie, Z. and Yu, G., Positive scalar curvature, higher rho invariants and localization algebras, Adv. Math.262 (2014) 823-866. · Zbl 1306.58008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.