×

Zero-free regions near a line. (English) Zbl 1531.30016

The authors consider entire functions of genus \(1\), i.e., entire functions having the representation \[ f(z) = z^n e^{a+b z} \prod_{k=1}^\infty \left(1-\frac{z}{z_k} \right) e^{\frac{z}{z_k}}, \] where \(n\in \mathbb{N}\cup\{0\},\) \(z_k \neq 0,\) and \(\sum_{k=1}^\infty \frac{1}{|z_k|^2} < \infty.\) If \(a, b, z_k \in \mathbb{R},\) then such functions form a subset of the famous Laguerre-Pólya class of entire functions. For an entire function \(f\) of genus 1 the authors denote by \(g(z) := - \frac{d}{dz} \log f(z), \) and for a real parameter \(x\) they consider a function \(g(z+x)= \frac{- n}{z+x} + \sum_{k=0}^\infty a_k(x) z^k. \)
Definition. For a given \(N\in \mathbb{N},\) the authors say that an entire function \(f\) of genus 1 belongs to the \(N\)-th order Laguerre-Pólya class, if \(b\in \mathbb{R}\) and the matrix \[ A_N(x) = \left[ \begin{array}{cccc} a_1(x) & a_2(x) & \ldots & a_N(x) \\ a_2(x) & a_3(x) &\ldots & a_{N+1}(x) \\ \vdots& &\ddots&\vdots \\ a_{N}(x) & a_{N+1}(x) & \ldots & a_{2N-1}(x) \end{array} \right] \] is positive semidefinite.
These classes of functions are nested. We mention that if such \(f\) belongs to the classical Laguerre-Pólya class then for every \(N\in \mathbb{N}\) the matrix \(A_N(x)\) is positive semidefinite.
In the paper the following characteristics of the spacing of roots are in use. For a function \(f\) having the representation introduced above let \(c=0\) if \(f\) has multiple roots, and \[c= \inf_{j\ne k} \big\{ |\operatorname{Re}(z_j - z_k)| : z_j \ne \overline{z_k} \big\}\] otherwise. Let \[d = \inf_j \big\{|\operatorname{Im} z_j|: \operatorname{Im} z_j \ne 0 \big\}\]The authors define the aperture of a function to be \(k = \frac{d}{c}\) (if \(c=0\), then \(k =\infty\)).
The results of the paper are of the following kind.
Theorem 1. Let \(f, f(0) \ne 0,\) be an entire function from the first-order Laguerre-Pólya class. Then \(k \geq \frac{\sqrt{3}}{\pi}\).
Theorem 2. Let \(f, f(0) \ne 0,\) be an entire function from the \(N\)-th order Laguerre-Pólya class. Then \(N =O_{k\to \infty} (k^9)\).
The authors discuss some applications of their results and its connections to the Riemann hypothesis.

MSC:

30D15 Special classes of entire functions of one complex variable and growth estimates

References:

[1] Bhatia, R., Matrix Analysis. Graduate Texts in Mathematics (1997), New York: Springer, New York
[2] Cheng, Y., An explicit zero-free region for the Riemann zeta-function, Rocky Mt. J. Math., 30, 1, 135-148 (2000) · Zbl 0999.11051 · doi:10.1216/rmjm/1022008980
[3] Chudakov, NG, On the functions \(\zeta (s)\) and \(\pi (x)\), C. R. Acad. Sci. USSR, 21, 421-422 (1938) · Zbl 0021.01101
[4] Csordas, G., Fourier transforms of positive definite kernels and the Riemann \(\xi \)-function, Comput. Methods Funct. Theory, 15, 3, 373-391 (2015) · Zbl 1333.30039 · doi:10.1007/s40315-014-0105-8
[5] Csordas, G., Dimitrov, D.K.: Conjectures and theorems in the theory of entire functions. vol. 25. In: Mathematical Journey Through Analysis, Matrix Theory and Scientific Computation (Kent, OH, 1999), pp. 109-122 (2000) · Zbl 0968.30012
[6] Csordas, G.; Norfolk, TS; Varga, RS, The Riemann hypothesis and the Turán inequalities, Trans. Am. Math. Soc., 296, 2, 521-541 (1986) · Zbl 0602.30030
[7] de Branges, L., Hilbert Spaces of Entire Functions (1968), Englewood Cliffs: Prentice-Hall Inc, Englewood Cliffs · Zbl 0157.43301
[8] de Branges, L., The convergence of Euler products, J. Funct. Anal., 107, 1, 122-210 (1992) · Zbl 0768.46009 · doi:10.1016/0022-1236(92)90103-P
[9] de la Vallée Poussin, C.-J.: Sur la fonction \(\zeta (s)\) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée. Colloque sur la Théorie des Nombres, Bruxelles,: Georges Thone. Liège; Masson & Cie, Paris 1956, 9-66 (1955) · Zbl 0072.03703
[10] Dimitrov, DK; Lucas, FR, Higher order Turán inequalities for the Riemann \(\xi \)-function, Proc. Am. Math. Soc., 139, 3, 1013-1022 (2011) · Zbl 1214.11092 · doi:10.1090/S0002-9939-2010-10515-4
[11] Dobsch, O., Matrixfunktionen beschränkter Schwankung, Math. Z., 43, 1, 353-388 (1938) · JFM 63.0848.02 · doi:10.1007/BF01181100
[12] Donoghue, Jr., W.F.: Monotone Matrix Functions and Analytic Continuation. Die Grundlehren der mathematischen Wissenschaften, Band 207. Springer, New York (1974) · Zbl 0278.30004
[13] Farmer, D.W.: Jensen polynomials are not a viable route to proving the Riemann hypothesis. arXiv:2008.07206 (2020)
[14] Farmer, D.W.: When are the roots of a polynomial real and distinct? A graphical view. arXiv:2010.15608 (2020)
[15] Ford, K.: Zero-free, regions for the Riemann zeta function. :In Number theory for the millennium, II (Urbana, IL, 2000): A K Peters. Natick, MA, pp. 25-56 (2002) · Zbl 1034.11045
[16] Griffin, M.; Ono, K.; Rolen, L.; Zagier, D., Jensen polynomials for the Riemann zeta function and other sequences, Proc. Natl. Acad. Sci. USA, 116, 23, 11103-11110 (2019) · Zbl 1431.11105 · doi:10.1073/pnas.1902572116
[17] Griffin, M.J., Ono, K., Rolen, L., Thorner, J., Tripp, Z., Wagner, I.: Jensen polynomials for the Riemann xi-function. Adv. Math. 397, Paper No. 108186, 17 (2022) · Zbl 1490.11086
[18] Heinävaara, O., Local characterizations for the matrix monotonicity and convexity of fixed order, Proc. Am. Math. Soc., 146, 9, 3791-3799 (2018) · Zbl 1408.26013 · doi:10.1090/proc/13674
[19] Heinävaara, O.: Characterizing matrix monotonicity of fixed order on general sets. arXiv:1906.06155 (2019)
[20] Li, X-J, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory, 65, 2, 325-333 (1997) · Zbl 0884.11036 · doi:10.1006/jnth.1997.2137
[21] Littlewood, J.E.: Researches in the theory of the Riemann \(\zeta \)-function. Proc. Lond. Math. Soc. 20, 2, XXII-XXVIII (1922) (Records, Feb. 10, 1921) · JFM 48.0403.05
[22] Montgomery, H.L.; The pair correlation of zeros of the zeta function. In: Analytic number theory (Proceedings of the Symposium of Pure Mathematics, vol. XXIV, St. Louis University, St. Louis, Mo., 1972), pp. 181-193. American Mathematical Society, Providence, RI (1973) · Zbl 0268.10023
[23] Mossinghoff, MJ; Trudgian, TS, Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function, J. Number Theory, 157, 329-349 (2015) · Zbl 1334.11070 · doi:10.1016/j.jnt.2015.05.010
[24] Nevanlinna, R.: Asymptotisch Entwicklungen beschränkter Funktionen und das Stieltjessche Momentproblem. Ann. Acad. Sci. Fenn. Ser. A 18, 1-52 (1922) · JFM 48.1226.02
[25] Odlyzko, AM, On the distribution of spacings between zeros of the zeta function, Math. Comput., 48, 177, 273-308 (1987) · Zbl 0615.10049 · doi:10.1090/S0025-5718-1987-0866115-0
[26] Odlyzko, A.M.: Tables of zeros of the Riemann zeta function. http://www.dtc.umn.edu/ odlyzko/zeta_tables/index.html (2022). Accessed 19 Jan 2021
[27] Pascoe, J.E.: Trace minmax functions and the radical Laguerre-Pólya class. Res. Math. Sci. 8 1, Paper No. 9, 13 (2021) · Zbl 1469.15027
[28] Pólya, G.: über annäherung durch polynome mit lauter reellen wurzeln. Rendiconti del Circolo Matematico di Palermo (1884-1940) 36, 279-295 (1913) · JFM 44.0474.01
[29] Pólya, G.: Uber die algebraisch-funktionentheoretischen untersuchüngen von j. l. w. v. jensen. Kgl. Danske Vid. Sel. Math.-Fys. Medd. 7, 3-33 (1928)
[30] Rodgers, B., Tao, T.: The de Bruijn-Newman constant is non-negative. Forum Math. Pi 8, e6, 62 (2020) · Zbl 1454.11158
[31] Simonič, A., Lehmer pairs and derivatives of Hardy’s \(Z\)-function, J. Number Theory, 184, 451-460 (2018) · Zbl 1420.11114 · doi:10.1016/j.jnt.2017.08.030
[32] Simonič, A.; Trudgian, TS; Turnage-Butterbaugh, CL, Some explicit and unconditional results on gaps between zeroes of the Riemann zeta-function, Trans. Am. Math. Soc., 375, 5, 3239-3265 (2022) · Zbl 1496.11118
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.