×

Bijections, generalizations, and other properties of sequentially congruent partitions. (English) Zbl 07811999

This article offers a fresh perspective on partition theory by focusing on a newly defined class of partitions called sequentially congruent partitions, introduced by M. Schneider and R. Schneider [Ann. Comb. 23, No. 3–4, 1027–1037 (2019; Zbl 1437.11147)]. In sequentially congruent partitions, each part is congruent to the next part modulo its index. The paper extends the foundational work of Schneider and Schneider [loc. cit.] by providing new notations, generalizations, and bijections, as well as reinterpreting these partitions within the framework of Young diagram transformations. Additionally, the authors investigate how these partitions fit within theory of partition ideals of G. E. Andrews [in: Groupe d’Etude d’Algebre, 1re Annee 1975/76, Exp. 6, 8 p. (1978; Zbl 0383.10008)], yielding insights into the structure and properties of these partitions.

MSC:

11P83 Partitions; congruences and congruential restrictions
05A17 Combinatorial aspects of partitions of integers
11P84 Partition identities; identities of Rogers-Ramanujan type

References:

[1] Andrews, GE, A general theory of identities of the Rogers-Ramanujan type, Bull. Am. Math. Soc., 80, 6, 1033-1052, (1974) · Zbl 0301.10016 · doi:10.1090/S0002-9904-1974-13616-5
[2] Andrews, GE, The Theory of Partitions, (1998), Cambridge: Cambridge University Press, Cambridge Mathematical Library, Cambridge · Zbl 0996.11002
[3] Andrews, GE; Chern, S.; Li, Z., Linked partition ideals and the Alladi-Schur theorem, J. Comb. Theory Ser. A, 189, (2022) · Zbl 1491.11090 · doi:10.1016/j.jcta.2022.105614
[4] Bell, ET, Square-partition congruences, Bull. Am. Math. Soc., 29, 8, 349-355, (1923) · JFM 49.0098.03 · doi:10.1090/S0002-9904-1923-03753-1
[5] Chern, S., Linked partition ideals, directed graphs, and \(q\)-multi-summations, Electron. J. Comb., 27, 3, 33, (2020) · Zbl 1452.11126
[6] Chern, S.; Li, Z., Linked partition ideals and Kanade-Russell conjectures, Discret. Math., 343, 7, (2020) · Zbl 1440.05021 · doi:10.1016/j.disc.2020.111876
[7] Gafni, A., Power partitions, J. Number Theory, (2015) · Zbl 1402.11124 · doi:10.1016/j.jnt.2015.11.004
[8] Hardy, GH; Ramanujan, S., Asymptotic formulæ in combinatory analysis, Proc. Lond. Math. Soc., 2, XVII, 75-115, (1918) · JFM 46.0198.04 · doi:10.1112/plms/s2-17.1.75
[9] Hirschhorn, MD, Some formulæ for partitions into squares, Discret. Math., 211, 225-228, (2000) · Zbl 0941.11039 · doi:10.1016/S0012-365X(99)00159-4
[10] Hirschhorn, MD; Sellers, J., On a problem of Lehmer on partitions into squares, Ramanujan J., 8, 279-287, (2004) · Zbl 1058.05004 · doi:10.1007/s11139-004-0138-0
[11] Lehmer, DH, On the Partition of Numbers into Squares, Am. Math. Monthly, 55, 8, 476-481, (1948) · Zbl 0031.20203 · doi:10.1080/00029890.1948.11999287
[12] Schneider, M.; Schneider, R., Sequentially congruent partitions and related bijections, Ann. Comb., 23, 3-4, 1027-1037, (2019) · Zbl 1437.11147 · doi:10.1007/s00026-019-00451-w
[13] Schneider, R.; Sellers, J.; Wagner, I., Sequentially congruent partitions and partitions into squares, Ramanujan J., 56, 645-650, (2021) · Zbl 1497.11258 · doi:10.1007/s11139-020-00294-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.