×

The symmetric driven cavity. (English) Zbl 1185.76122

Editorial remark: No review copy delivered.

MSC:

76-XX Fluid mechanics
Full Text: DOI

References:

[1] V. Podsetchine and G. Schernewski, ”The influence of spatial wind inhomegeneity on flow patterns in a small lake,” Water Resour. WARED433, 3348 (1999).WARED40097-8078
[2] C. Stevens and J. Imberger, ”The initial response of a stratified lake to a surface shear stress,” J. Fluid Mech. JFLSA7312, 39 (1996).JFLSA70022-1120
[3] U. Ghia, K. N. Ghia, and C. Y. Shin, ”High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method,” J. Comput. Phys. JCTPAH48, 387 (1982).JCTPAH0021-9991 · Zbl 0511.76031
[4] S. P. Vanka, ”Block-implicit multigrid solution of Navier–Stokes equations on primitive variables,” J. Comput. Phys. JCTPAH65, 138 (1986).JCTPAH0021-9991 · Zbl 0606.76035
[5] C. H. Bruneau and C. Johnson, ”An efficient scheme for solving steady incompressible Navier–Stokes equations,” J. Comput. Phys. JCTPAH89, 389 (1990).JCTPAH0021-9991
[6] R. Schreiber and H. B. Keller, ”Driven cavity flows by efficient numerical techniques,” J. Comput. Phys. JCTPAH49, 310 (1983).JCTPAH0021-9991 · Zbl 0503.76040
[7] M. Vynnycky and S. Kimura, ”An investigation of recirculating flow in a driven cavity,” Phys. Fluids PHFLE66, 3610 (1994).PHFLE61070-6631 · Zbl 0832.76016
[8] S. Hou, Q. Hou, S. Chen, G. Doolen, and A. C. Cogley, ”Simulation of cavity flow by the lattice Boltzmann method,” J. Comput. Phys. JCTPAH118, 329 (1995).JCTPAH0021-9991 · Zbl 0821.76060
[9] U. Frisch, B. Hasslacher, and Y. Pomeau, ”Lattice-gas automata for the Navier–Stokes equation,” Phys. Rev. Lett. PRLTAO56, 1505 (1986).PRLTAO0031-9007
[10] U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemond, Y. Pomeau, and J. Rivet, ”Lattice gas hydrodynamics in two and three dimensions,” Complex Syst. CPSYEN1, 649 (1987).CPSYEN0891-2513
[11] S. Wolfram, ”Cellular automaton fluids 1: Basic theory,” J. Stat. Mech. 45, 471 (1986). · Zbl 0629.76002 · doi:10.1007/BF01021083
[12] G. McNamara and G. Zanetti, ”Use of the Boltzmann equation to simulate lattice-gas automata,” Phys. Rev. Lett. PRLTAO61, 2332 (1988).PRLTAO0031-9007
[13] P. L. Bhatnagar, E. P. Gross, and M. Krook, ”A model for collision processes in gasses. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev. PHRVAO94, 511 (1954).PHRVAO0031-899X · Zbl 0055.23609
[14] F. Higuera and J. Jimenez, ”Boltzmann approach to lattice gas simulations,” Europhys. Lett. EULEEJ9, 663 (1989).EULEEJ0295-5075
[15] H. Chen, S. Chen, and W. Matthaeus, ”Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method,” Phys. Rev. A PLRAAN45, R5339 (1992).PLRAAN1050-2947
[16] J. D. Sterling and S. Chen, ”Stability analysis of lattice Boltzmann methods,” J. Comput. Phys. JCTPAH123, 196 (1996).JCTPAH0021-9991 · Zbl 0840.76078
[17] D. Wolf-Gladrow, Lattice Gas Cellular Automata and Lattice Boltzmann Models, Lecture Notes in Mathematics, No. 1725 (Springer, New York, 2000). · Zbl 0999.82054
[18] H. C. Kuhlmann, M. Wanschura, and H. J. Rath, ”Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures,” J. Fluid Mech. JFLSA7336, 267 (1997).JFLSA70022-1120 · Zbl 0900.76368
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.