×

A note on predictive densities based on composite likelihood methods. (English) Zbl 1416.62049

Summary: Whenever the computation of data distribution is unfeasible or inconvenient, the classical predictive procedures prove not to be useful. These rely, after all, on the conditional distribution of the future random variable, which is also unavailable. This paper considers a notion of composite likelihood for specifying composite predictive distributions, viewed as surrogates for true unknown predictive distribution. In particular, the focus is on the pairwise likelihood obtained as a weighted product of likelihood factors related to bivariate events associated with both the sample data and future observation. The specification of the weights, and more generally the evaluation of the frequentist properties of alternative pairwise predictive distributions, is performed by considering the mean square prediction error of the associated predictors and the expected Kullback-Liebler loss of the related predictive densities. Finally, simple examples concerning autoregressive models are presented.

MSC:

62A01 Foundations and philosophical topics in statistics
62F12 Asymptotic properties of parametric estimators
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

References:

[1] Allard, D; Comunian, A; Renard, P, Probability aggregation methods in geoscience, Math. Geosci., 44, 545-581, (2012) · Zbl 1256.86006 · doi:10.1007/s11004-012-9396-3
[2] Bjørnstad, JF, Predictive likelihood: a review (with discussion), Stat. Sci., 5, 242-265, (1990) · Zbl 0955.62517 · doi:10.1214/ss/1177012175
[3] Chandler, RE; Bate, S, Inference for clustered data using the independence loglikelihood, Biometrika, 94, 167-183, (2007) · Zbl 1142.62367 · doi:10.1093/biomet/asm015
[4] Cover, T.M., Thomas, J.A.: Elements Inf. Theory, 2nd edn. Wiley, New York (2006) · Zbl 1140.94001
[5] Genest, C, A characterization theorem for externally Bayesian groups, Ann. Stat., 12, 1100-1105, (1984) · Zbl 0541.62003 · doi:10.1214/aos/1176346726
[6] Geweke, J; Amisano, G, Optimal prediction pools, J. Econom., 164, 130-141, (2011) · Zbl 1441.62700 · doi:10.1016/j.jeconom.2011.02.017
[7] Hall, P; Peng, L; Tajvidi, N, On prediction intervals based on predictive likelihood or bootstrap methods, Biometrika, 86, 871-880, (1999) · Zbl 0942.62027 · doi:10.1093/biomet/86.4.871
[8] Joe, H; Lee, Y, On weighting of bivariate margins in pairwise likelihood, J. Multivar. Anal., 100, 670-685, (2009) · Zbl 1155.62044 · doi:10.1016/j.jmva.2008.07.004
[9] Kascha, C; Ravazzolo, F, Combining inflation density forecasts, J. Forecast., 29, 231-250, (2010) · Zbl 1204.91092 · doi:10.1002/for.1147
[10] Lindsay, BG, Composite likelihood methods, Contemp. Math., 80, 221-239, (1988) · Zbl 0672.62069 · doi:10.1090/conm/080/999014
[11] Müller, G; Czado, C, An autoregressive ordered probit model with application to high frequency financial data, J. Comput. Graph. Stat., 14, 320-338, (2005) · doi:10.1198/106186005X48687
[12] Ribatet, M; Cooley, D; Davison, AC, Bayesian inference from composite likelihoods, with and application to spatial extremes, Stat. Sin., 22, 813-845, (2012) · Zbl 1238.62031
[13] Ueki, M; Fueda, K, Adjusting estimative prediction limits, Biometrika, 94, 509-511, (2007) · Zbl 1135.62019 · doi:10.1093/biomet/asm032
[14] Varin, C; Reid, N; Firth, D, An overview of composite likelihood methods, Stat. Sin., 21, 5-42, (2011) · Zbl 1534.62022
[15] Varin, C; Vidoni, P, Pairwise likelihood inference for ordinal categorical time series, Comput. Stat. Data Anal., 51, 2365-2373, (2006) · Zbl 1157.62499 · doi:10.1016/j.csda.2006.09.009
[16] Varin, C; Vidoni, P, Pairwise likelihood inference for general state space models, Econom. Rev., 28, 170-185, (2009) · Zbl 1161.62061 · doi:10.1080/07474930802388009
[17] Zhu, SC; Wu, YN; Mumford, D, Minimax entropy principle and its application to texture modeling, Neural Comput., 9, 1627-1660, (1997) · doi:10.1162/neco.1997.9.8.1627
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.