×

Inference and forecasting for continuous-time integer-valued trawl processes. (English) Zbl 07743048

Summary: This paper develops likelihood-based methods for estimation, inference, model selection, and forecasting of continuous-time integer-valued trawl processes. The full likelihood of integer-valued trawl processes is, in general, highly intractable, motivating the use of composite likelihood methods, where we consider the pairwise likelihood in lieu of the full likelihood. Maximizing the pairwise likelihood of the data yields an estimator of the parameter vector of the model, and we prove consistency and, in the short memory case, asymptotic normality of this estimator. When the underlying trawl process has long memory, the asymptotic behaviour of the estimator is more involved; we present some partial results for this case. The pairwise approach further allows us to develop probabilistic forecasting methods, which can be used to construct the predictive distribution of integer-valued time series. In a simulation study, we document the good finite sample performance of the likelihood-based estimator and the associated model selection procedure. Lastly, the methods are illustrated in an application to modelling and forecasting financial bid-ask spread data, where we find that it is beneficial to carefully model both the marginal distribution and the autocorrelation structure of the data.

MSC:

62-XX Statistics
91-XX Game theory, economics, finance, and other social and behavioral sciences

References:

[1] Al-Osh, M. A.; Alzaid, A. A., First-order integer-valued autoregressive (INAR(1)) process, J. Time Series Anal., 8, 3, 261-275 (1987) · Zbl 0617.62096
[2] Barndorff-Nielsen, O. E., Stationary infinitely divisible processes, Braz. J. Probab. Stat., 25, 3, 294-322 (2011) · Zbl 1244.60037
[3] Barndorff-Nielsen, O. E.; Lunde, A.; Shephard, N.; Veraart, A., Integer-valued trawl processes: A class of stationary infinitely divisible processes, Scand. J. Stat., 41, 693-724 (2014) · Zbl 1309.60033
[4] Basse-O’Connor, A.; Podolskij, M.; Thäle, C., A Berry-Esseén theorem for partial sums of functionals of heavy-tailed moving averages, Electron. J. Probab., 25, 1-31 (2020) · Zbl 1456.60051
[5] Bollen, N. P.B.; Smith, T.; Whaley, R. E., Modeling the bid/ask spread: Measuring the inventory-holding premium, J. Financ. Econ., 72, 1, 97-141 (2004)
[6] Breuer, P.; Major, P., Central limit theorems for non-linear functionals of Gaussian fields, J. Multivariate Anal., 13, 3, 425-441 (1983) · Zbl 0518.60023
[7] Chen, J.; Huang, Y.; Wang, P., Composite likelihood under hidden Markov model, Statist. Sinica, 26, 1, 1569-1586 (2016) · Zbl 1356.62135
[8] Courgeau, V.; Veraart, A., Asymptotic theory for the inference of the latent trawl model for extreme values (2021), Available at SSRN: https://ssrn.com/abstract=3527739
[9] Cox, D. R.; Reid, N., A note on pseudolikelihood constructed from marginal densities, Biometrika, 91, 3, 729-737 (2004) · Zbl 1162.62365
[10] Curato, I. V.; Stelzer, R., Weak dependence and GMM estimation of supOU and mixed moving average processes, Electron. J. Stat., 13, 1, 310-360 (2019) · Zbl 1406.60028
[11] Davidson, J., Stochastic limit theory: Introduction for econometricians, (Granger, C. W.J.; Mizon, G. E., Advanced Texts in Econometrics (1994), Oxford University Press)
[12] Davis, R. A.; Yau, C. Y., Comments on pairwise likelihood in time series models, Statist. Sinica, 21, 1, 255-277 (2011) · Zbl 1206.62146
[13] Diebold, F. X.; Mariano, R. S., Comparing predictive accuracy, J. Bus. Econom. Statist., 13, 3, 253-263 (1995)
[14] Doukhan, P.; Fokianos, K.; Li, X., On weak dependence conditions: The case of discrete valued processes, Statist. Probab. Lett., 82, 11, 1941-1948 (2012), URL https://www.sciencedirect.com/science/article/pii/S0167715212002544 · Zbl 1254.60036
[15] Doukhan, P.; Jakubowski, A.; Lopes, S. R.C.; Surgailis, D., Discrete-time trawl processes, Stochastic Process. Appl., 129, 4, 1326-1348 (2019) · Zbl 1488.60243
[16] Elliott, G.; Timmermann, A., Economic Forecasting (2016), Princeton University Press
[17] Engle, R. F.; Pakel, C.; Sheppard, K.; Shephard, N., Fitting vast dimensional time-varying covariance models, J. Bus. Econom. Statist. (2020)
[18] Epstein, E. S., A scoring system for probability forecasts of ranked categories, J. Appl. Meteorol. Climatol., 8, 6, 985-987 (1969)
[19] Freeland, R. K.; McCabe, B. P.M., Forecasting discrete valued low count time series, Int. J. Forecast., 20, 3, 427-434 (2004)
[20] Fuchs, F.; Stelzer, R., Mixing conditions for multivariate infinitely divisible processes with an application to mixed moving averages and the supOU stochastic volatility model, ESAIM Probab. Stat., 17, 455-471 (2013) · Zbl 1311.60023
[21] Gao, X.; Song, P. X.K., Composite likelihood Bayesian information criteria for model selection in high-dimensional data, J. Amer. Statist. Assoc., 105, 492, 1531-1540 (2010) · Zbl 1388.62034
[22] Godambe, V. P., An optimum property of regular maximum likelihood equation, Ann. Math. Stat., 31, 1208-1211 (1960) · Zbl 0118.34301
[23] Groß-KlußMann, A.; Hautsch, N., Predicting bid-ask spreads using long-memory autoregressive conditional Poisson models, J. Forecast., 32, 8, 724-742 (2013) · Zbl 1397.91508
[24] Hjort, N. L.; Omre, H., Topics in spatial statistics (with discussion, comments and rejoinder), Scand. J. Stat., 21, 289-357 (1994) · Zbl 0816.62075
[25] Huang, R. D.; Stoll, H. R., The components of the bid-ask spread: A general approach, Rev. Financ. Stud., 10, 4, 995-1034 (1997)
[26] Jakubowski, A., Minimal conditions in p-stable limit theorems, Stochastic Process. Appl., 44, 291-327 (1993) · Zbl 0771.60015
[27] Larribe, F.; Fearnhead, P., On composite likelihoods in statistical genetics, Statist. Sinica, 21, 1, 43-69 (2011) · Zbl 1206.62171
[28] Lindsay, B., Composite likelihood methods, Contemp. Math., 80, 220-239 (1988) · Zbl 0672.62069
[29] McCabe, B.; Martin, G., Bayesian predictions of low count time series, Int. J. Forecast., 21, 2, 315-330 (2005)
[30] McKenzie, E., Some simple models for discrete variate time series, J. Am. Water Resour. Assoc., 21, 4, 645-650 (1985)
[31] Newey, W. K.; McFadden, D., Chapter 36: Large sample estimation and hypothesis testing, (Handbook of Econometrics, vol. 4 (1994), Elsevier), 2111-2245
[32] Newey, W. K.; West, K. D., A simple positive semi-definite heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica, 55, 3, 703-708 (1987) · Zbl 0658.62139
[33] Ng, C. T.; Joe, H., Model comparison with composite likelihood information criteria, Bernoulli, 20, 4, 1738-1764 (2014) · Zbl 1357.62086
[34] Ng, C. T.; Joe, H.; Karlis, D.; Liu, J., Composite likelihood for time series models with a latent autoregressive process, Statist. Sinica, 21, 1, 279-305 (2011) · Zbl 1206.62153
[35] Nourdin, I.; Peccati, G.; Podolskij, M., Quantitative Breuer-Major theorems, Stochastic Process. Appl., 121, 4, 793-812 (2011) · Zbl 1225.60045
[36] Noven, R.; Veraart, A. E.D.; Gandy, A., A latent trawl process model for extreme values, J. Energy Markets, 11, 3, 1-24 (2018)
[37] Pakkanen, M. S.; Passeggeri, R.; Sauri, O.; Veraart, A. E.D., Limit theorems for trawl processes, Electron. J. Probab., 26, 1-36 (2021) · Zbl 1477.60057
[38] Rajput, B. S.; Rosinski, J., Spectral representations of infinitely divisible processes, Probab. Theory Related Fields, 82, 3, 451-487 (1989) · Zbl 0659.60078
[39] Schwarz, G., Estimating the dimension of a model, Ann. Statist., 6, 2, 461-464 (1978) · Zbl 0379.62005
[40] Shephard, N.; Yang, J. J., Likelihood inference for exponential-trawl processes, (Podolskij, M.; Stelzer, R.; Thorbjørnsen, S.; Veraart, A. E.D., The Fascination of Probability, Statistics and their Applications: in Honour of Ole E. Barndorff-Nielsen (2016), Springer International Publishing), 251-281 · Zbl 1359.62347
[41] Shephard, N.; Yang, J. J., Continuous time analysis of fleeting discrete price moves, J. Amer. Statist. Assoc., 112, 519, 1090-1106 (2017)
[42] Silva, N.; Pereira, I.; Silva, M. E., Forecasting in INAR(1) model, Revstat - Stat. J., 7, 1, 119-134 (2009) · Zbl 1297.62185
[43] Sørensen, H., Independence, successive and conditional likelihood for time series of counts, J. Statist. Plann. Inference, 200, 20-31 (2019), URL https://www.sciencedirect.com/science/article/pii/S0378375818302556 · Zbl 1421.62132
[44] Takeuchi, K., Distribution of informational statistics and a criterion of model fitting, Suri Kagaku [Math. Sci.] (in Japanese), 153, 12-18 (1976)
[45] Varin, C.; Reid, N.; Firth, D., An overview of composite likelihood methods, Statist. Sinica, 21, 1, 5-42 (2011) · Zbl 1534.62022
[46] Varin, C.; Vidoni, P., A note on composite likelihood inference and model selection, Biometrika, 92, 3, 519-528 (2005) · Zbl 1183.62037
[47] Veraart, A. E., Modeling, simulation and inference for multivariate time series of counts using trawl processes, J. Multivariate Anal., 169, 110-129 (2019) · Zbl 1404.60048
[48] Vuong, Q. H., Likelihood ratio tests for model selection and non-nested hypotheses, Econometrica, 57, 2, 307-333 (1989) · Zbl 0701.62106
[49] Wooldridge, J. M., Chapter 45: Estimation and inference for dependent processes, (Handbook of Econometrics, vol. 4 (1994), Elsevier), 2639-2738
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.