×

Passive flight in density-stratified fluids. (English) Zbl 1415.76796

Summary: Leaves falling in air and marine larvae settling in water are examples of unsteady descents due to complex interactions between gravitational and aerodynamic forces. Understanding passive flight is relevant to many branches of engineering and science, ranging from estimating the behaviour of re-entry space vehicles to analysing the biomechanics of seed dispersion. The motion of regularly shaped objects falling freely in homogenous fluids is relatively well understood. However, less is known about how density stratification of the fluid medium affects passive flight. In this paper, we experimentally investigate the descent of heavy discs in stably stratified fluids for Froude numbers of order 1 and Reynolds numbers of order 1000. We specifically consider fluttering descents, where the disc oscillates as it falls. In comparison with pure water and homogeneous saltwater fluid, we find that density stratification significantly enhances the radial dispersion of the disc, while simultaneously decreasing the vertical descent speed, fluttering amplitude and inclination angle of the disc during descent. We explain the physical mechanisms underlying these observations in the context of a quasi-steady force and torque model. These findings could have significant impact on the design of unpowered vehicles and on the understanding of geological and biological transport where density and temperature variations may occur.

MSC:

76Z10 Biopropulsion in water and in air
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D50 Stratification effects in viscous fluids
Full Text: DOI

References:

[1] Van Aartrijk, M.; Clercx, H. J. H., The dynamics of small inertial particles in weakly stratified turbulence, J. Hydro-Environ. Res., 4, 2, 103-114, (2010) · Zbl 1183.76536 · doi:10.1016/j.jher.2010.04.004
[2] Van Aartrijk, M.; Clercx, H. J. H.; Winters, K. B., Single-particle, particle-pair, and multiparticle dispersion of fluid particles in forced stably stratified turbulence, Phys. Fluids, 20, 2, (2008) · Zbl 1182.76792 · doi:10.1063/1.2838593
[3] Andersen, A.; Pesavento, U.; Wang, Z. J., Unsteady aerodynamics of fluttering and tumbling plates, J. Fluid Mech., 541, 65-90, (2005) · Zbl 1082.76037 · doi:10.1017/S002211200500594X
[4] Andersen, A.; Pesavento, U.; Wang, Z. J., Analysis of transitions between fluttering, tumbling and steady descent of falling cards, J. Fluid Mech., 541, 91-104, (2005) · Zbl 1082.76038 · doi:10.1017/S0022112005005847
[5] Auguste, F.; Magnaudet, J.; Fabre, D., Falling styles of disks, J. Fluid Mech., 719, 388-405, (2013) · Zbl 1284.76130 · doi:10.1017/jfm.2012.602
[6] Awotahegn, M. B., Oosterkamp, L. D. & Nystrøm, P. R.20163D study of dropped object motion in sea water based on scale test. In ISOPE-I-16-474. International Society of Offshore and Polar Engineers.
[7] Belmonte, A.; Eisenberg, H.; Moses, E., From flutter to tumble: inertial drag and Froude similarity in falling paper, Phys. Rev. Lett., 81, 2, 345-348, (1998) · doi:10.1103/PhysRevLett.81.345
[8] Biró, I., Gyure, B., Jánosi, I. M., Szabó, K. G. & Tél, T.2007 Oscillation and levitation of balls in continuously stratified fluids. arXiv:physics/0702208.
[9] Blanchette, F.; Bush, J. W. M., Particle concentration evolution and sedimentation-induced instabilities in a stably stratified environment, Phys. Fluids, 17, 7, (2005) · Zbl 1187.76051 · doi:10.1063/1.1947987
[10] Camassa, R.; Falcon, C.; Lin, J.; Mclaughlin, R. M.; Mykins, N., A first-principle predictive theory for a sphere falling through sharply stratified fluid at low Reynolds number, J. Fluid Mech., 664, 436-465, (2010) · Zbl 1221.76064 · doi:10.1017/S0022112010003800
[11] Chrust, M.; Bouchet, G.; Dušek, J., Numerical simulation of the dynamics of freely falling discs, Phys. Fluids, 25, 4, (2013) · doi:10.1063/1.4799179
[12] Doostmohammadi, A.; Dabiri, S.; Ardekani, A. M., A numerical study of the dynamics of a particle settling at moderate Reynolds numbers in a linearly stratified fluid, J. Fluid Mech., 750, 5-32, (2014) · doi:10.1017/jfm.2014.243
[13] Economidou, M.; Hunt, G. R., Density stratified environments: the double-tank method, Expl Fluids, 46, 3, 453-466, (2009) · doi:10.1007/s00348-008-0571-8
[14] Field, S. B.; Klaus, M.; Moore, M. G.; Nori, F., Chaotic dynamics of falling disks, Nature, 388, 6639, 252-254, (1997) · doi:10.1038/40817
[15] Fortuin, J. M. H., Theory and application of two supplementary methods of constructing density gradient columns, J. Polym. Sci., 44, 144, 505-515, (1960) · doi:10.1002/pol.1960.1204414421
[16] Ganzevles, S. P. M.; Van Nuland, F. S. W.; Maas, L. R. M.; Toussaint, H. M., Swimming obstructed by dead-water, Naturwissenschaften, 96, 4, 449-456, (2009) · doi:10.1007/s00114-008-0493-6
[17] Gee, E., Western, A. & Swearer, S.2016Dispersal in stratified environments a biophysical modelling study of black bream larvae in a salt-wedge estuary. In Paper 26649 in Proceedings of the 11th International Symposium on Ecohydraulics, Melbourne, Australia, 7-12 February. The University of Melbourne.
[18] Hanazaki, H.; Kashimoto, K.; Okamura, T., Jets generated by a sphere moving vertically in a stratified fluid, J. Fluid Mech., 638, 173-197, (2009) · Zbl 1183.76020 · doi:10.1017/S0022112009990498
[19] Heisinger, L.; Newton, P.; Kanso, E., Coins falling in water, J. Fluid Mech., 742, 243-253, (2014) · doi:10.1017/jfm.2014.6
[20] Hill, D. F., General density gradients in general domains: the ‘two-tank’ method revisited, Expl Fluids, 32, 4, 434-440, (2002) · doi:10.1007/s00348-001-0376-5
[21] Hoerner, S. F., Fluid-dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance, (1965), Hoerner Fluid Dynamics
[22] Hu, R.; Wang, L., Motion transitions of falling plates via quasisteady aerodynamics, Phys. Rev. E, 90, (2014)
[23] Hurlen, E. C.2006 The motions and wave fields produced by an ellipse moving through a stratified fluid. PhD thesis, University of California, San Diego.
[24] Jin, C.; Xu, K., Numerical study of the unsteady aerodynamics of freely falling plates, Commun. Comput. Phys., 3, 4, 834-851, (2008)
[25] Jones, M. A.; Shelley, M. J., Falling cards, J. Fluid Mech., 540, 393-425, (2005) · Zbl 1082.76012 · doi:10.1017/S0022112005005859
[26] Kuznetsov, S. P., Plate falling in a fluid: regular and chaotic dynamics of finite-dimensional models, Regular Chaotic Dyn., 20, 3, 345-382, (2015) · Zbl 1327.34089 · doi:10.1134/S1560354715030090
[27] Lee, C.; Su, Z.; Zhong, H.; Chen, S.; Zhou, M.; Wu, J., Experimental investigation of freely falling thin disks. Part 2. Transition of three-dimensional motion from zigzag to spiral, J. Fluid Mech., 732, 77-104, (2013) · Zbl 1294.76028 · doi:10.1017/jfm.2013.390
[28] Lin, E. I. H.1982 A review of the salt-gradient solar pond technology. JPL Publ. 81-116. Jet Propulsion Laboratory.
[29] Lin, Q.; Boyer, D. L.; Fernando, H. J. S., Turbulent wakes of linearly stratified flow past a sphere, Phys. Fluids A, 4, 8, 1687-1696, (1992) · doi:10.1063/1.858389
[30] Lin, Q.; Lindberg, W. R.; Boyer, D. L.; Fernando, H. J. S., Stratified flow past a sphere, J. Fluid Mech., 240, 315-354, (1992) · doi:10.1017/S0022112092000119
[31] Lofquist, K. E. B.; Purtell, L. P., Drag on a sphere moving horizontally through a stratified liquid, J. Fluid Mech., 148, 271-284, (1984) · doi:10.1017/S0022112084002342
[32] Maas, L. R. M.; Van Haren, H., Worden mooi-weer verdrinkingen door dood-water veroorzaakt, Meteorologica, 15, 211-216, (2006)
[33] Macintyre, S.; Romero, J. R.; Silsbe, G. M.; Emery, B. M., Stratification and horizontal exchange in Lake Victoria, East Africa, Limnol. Oceanogr., 59, 6, 1805-1838, (2014) · doi:10.4319/lo.2014.59.6.1805
[34] Majed, A. & Cooper, P.2013High fidelity sink trajectory nonlinear simulations for dropped subsea objects. In ISOPE-I-13-310. International Society of Offshore and Polar Engineers.
[35] Maxwell, J. C., The Scientific Letters and Papers of James Clerk Maxwell: 1846-1862, (1990), Cambridge University Press · Zbl 0744.01034
[36] Mercier, M. J.; Vasseur, R.; Dauxois, T., Resurrecting dead-water phenomenon, Nonlinear Process. Geophys., 18, 2, 193-208, (2011) · doi:10.5194/npg-18-193-2011
[37] Merzkirch, W., Flow Visualization, (1987), Academic Press · Zbl 0701.76001
[38] Michelin, S.; Smith, S. G. L., An unsteady point vortex method for coupled fluid – solid problems, Theor. Comput. Fluid Dyn., 23, 2, 127-153, (2009) · Zbl 1234.76043 · doi:10.1007/s00162-009-0096-7
[39] Oster, G., Density gradients, Sci. Am., 213, 70-76, (1965) · doi:10.1038/scientificamerican0865-70
[40] Pesavento, U.; Wang, Z. J., Falling paper: Navier-Stokes solutions, model of fluid forces, and center of mass elevation, Phys. Rev. Lett., 93, 14, (2004) · doi:10.1103/PhysRevLett.93.144501
[41] Pineda, J.; Hare, J. A.; Sponaugle, S., Larval transport and dispersal in the coastal ocean and consequences for population connectivity, Oceanography, 20, 3, 22-39, (2007) · doi:10.5670/oceanog.2007.27
[42] Pounds, P., Potie, T., Kendoul, F., Singh, S., Jurdak, R. & Roberts, J.2016Automatic distribution of disposable self-deploying sensor modules. In Springer Tracts in Advanced Robotics, pp. 535-543. Springer.
[43] Pullin, D. I.; Wang, Z. J., Unsteady forces on an accelerating plate and application to hovering insect flight, J. Fluid Mech., 509, 1-21, (2004) · Zbl 1163.76329 · doi:10.1017/S0022112004008821
[44] Settles, G. S., Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media, (2012), Springer · Zbl 0987.76002
[45] Spedding, G. R., Vertical structure in stratified wakes with high initial Froude number, J. Fluid Mech., 454, 71-112, (2002) · Zbl 1082.76544 · doi:10.1017/S0022112001007182
[46] Staquet, C., Internal gravity waves in geophysical fluids, CISM Int. Cent. Mech. Sci., 479, 75-132, (2005) · Zbl 1178.76137 · doi:10.1007/3-211-38078-7_2
[47] Stringham, G. E.; Simons, D. B.; Guy, H. P., The Behavior of Large Particles Falling in Quiescent Liquids, (1969), US Gov. Printing Office · doi:10.3133/pp562C
[48] Tanabe, Y.; Kaneko, K., Behavior of a falling paper, Phys. Rev. Lett., 73, 10, 1372-1375, (1994) · doi:10.1103/PhysRevLett.73.1372
[49] Torres, C. R.; Hanazaki, H.; Ochoa, J.; Castillo, J.; Van Woert, M., Flow past a sphere moving vertically in a stratified diffusive fluid, J. Fluid Mech., 417, 211-236, (2000) · Zbl 0971.76023 · doi:10.1017/S0022112000001002
[50] Torres, C. R.; Ochoa, J.; Castillo, J.; Hanazaki, H., Numerical simulation of flow past a sphere in vertical motion within a stratified fluid, J. Comput. Appl. Math., 103, 1, 67-76, (1999) · Zbl 0977.76510 · doi:10.1016/S0377-0427(98)00241-6
[51] Valdes, S., Urza, I., Pounds, P. & Singh, S.2012Samara: low-cost deployment for environmental sensing using passive autorotation. In Robotics: Science and Systems Workshop on Robotics for Environmental Monitoring. MIT Press.
[52] Vincent, L.; Shambaugh, W. S.; Kanso, E., Holes stabilize freely falling coins, J. Fluid Mech., 801, 250-259, (2016) · doi:10.1017/jfm.2016.432
[53] Wang, Z. J.; Birch, J. M.; Dickinson, M. H., Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations versus robotic wing experiments, J. Expl Biol., 207, 3, 449-460, (2004) · doi:10.1242/jeb.00739
[54] Willmarth, W. W.; Hawk, N. E.; Harvey, R. L., Steady and unsteady motions and wakes of freely falling disks, Phys. Fluids, 7, 2, 197-208, (1964) · Zbl 0116.18903 · doi:10.1063/1.1711133
[55] Yasseri, S., Experiment of free-falling cylinders in water, Underwat. Technol., 32, 3, 177-191, (2014) · doi:10.3723/ut.32.177
[56] Yick, K. Y.; Torres, C. R.; Peacock, T.; Stocker, R., Enhanced drag of a sphere settling in a stratified fluid at small Reynolds numbers, J. Fluid Mech., 632, 49-68, (2009) · Zbl 1183.76058 · doi:10.1017/S0022112009007332
[57] Zhao, H. & Peterson, P. F.2010An overview of modeling methods for thermal mixing and stratification in large enclosures for reactor safety analysis. In NUTHOS PN8P0079. Elsevier.
[58] Zhong, H.; Lee, C.; Su, Z.; Chen, S.; Zhou, M.; Wu, J., Experimental investigation of freely falling thin disks. Part 1. The flow structures and Reynolds number effects on the zigzag motion, J. Fluid Mech., 716, 228-250, (2013) · Zbl 1284.76035 · doi:10.1017/jfm.2012.543
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.