×

Optimal containment of epidemics over temporal activity-driven networks. (English) Zbl 1418.39017

Summary: In this paper, we study the dynamics of epidemic processes taking place in temporal and adaptive networks. Building on the activity-driven network model, we propose an adaptive model of epidemic processes, where the network topology dynamically changes due to both exogenous factors independent of the epidemic dynamics, as well as endogenous preventive measures adopted by individuals in response to the state of the infection. A direct analysis of the epidemic dynamics using Markov processes involves the eigenvalues of a transition probability matrix whose size grows exponentially with the number of nodes. To overcome this computational challenge, we derive an upper-bound on the decay ratio of the number of infected nodes in terms of the eigenvalues of a \(2 \times 2\) matrix. Using this upper bound, we propose an efficient algorithm to tune the parameters describing the endogenous preventive measures in order to contain epidemics over time. We validate our theoretical results via numerical simulations.

MSC:

39A50 Stochastic difference equations
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
90C25 Convex programming
91D10 Models of societies, social and urban evolution
91D30 Social networks; opinion dynamics

References:

[1] J. Abad Torres, S. Roy, and Y. Wan, Sparse resource allocation for linear network spread dynamics, IEEE Trans. Automat. Control, 62 (2017), pp. 1714-1728, https://doi.org/10.1109/TAC.2016.2593895. · Zbl 1366.93238
[2] J. E. Aledort, N. Lurie, J. Wasserman, and S. A. Bozzette, Non-pharmaceutical public health interventions for pandemic influenza: An evaluation of the evidence base, BMC Public Health, 7 (2007), 208, https://doi.org/10.1186/1471-2458-7-208.
[3] D. Bell, A. Nicoll, K. Fukuda, P. Horby, A. Monto, F. Hayden, C. Wylks, L. Sanders, and J. Van Tam, Nonpharmaceutical interventions for pandemic influenza, national and community measures, Emerging Infec. Dis., 12 (2006), pp. 88-94, https://doi.org/10.3201/eid1201.051371.
[4] M. C. J. Bootsma and N. M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in U.S. cities, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 7588-7593, https://doi.org/10.1073/pnas.0611071104.
[5] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, A tutorial on geometric programming, Optim. Eng., 8 (2007), pp. 67-127, https://doi.org/10.1007/s11081-007-9001-7. · Zbl 1178.90270
[6] Y. Bu, S. Gregory, and H. L. Mills, Efficient local behavioral-change strategies to reduce the spread of epidemics in networks, Phys. Rev. E, 88 (2013), 042801, https://doi.org/10.1103/PhysRevE.88.042801.
[7] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos, Epidemic thresholds in real networks, ACM Trans. Inf. System Secur., 10 (2008).
[8] G. Chowell and H. Nishiura, Transmission dynamics and control of Ebola virus disease (EVD): A review, BMC Medicine, 12 (2014), 196, https://doi.org/10.1186/s12916-014-0196-0.
[9] O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley, New York, 2000. · Zbl 0997.92505
[10] S. Funk, M. Salathé, and V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. Roy. Soc. Interface, 7 (2010), pp. 1247-1256, https://doi.org/10.1098/rsif.2010.0142.
[11] A. Ganesh, L. Massoulié, and D. Towsley, The effect of network topology on the spread of epidemics, in Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies, 2005, pp. 1455-1466.
[12] T. Gross and B. Blasius, Adaptive coevolutionary networks: A review., J. Roy. Soc. Interface, 5 (2008), pp. 259-271, https://doi.org/10.1098/rsif.2007.1229.
[13] T. Gross, C. J. D. D’Lima, and B. Blasius, Epidemic dynamics on an adaptive network, Phys. Rev. Lett., 96 (2006), 208701, https://doi.org/10.1103/PhysRevLett.96.208701.
[14] T. Gross and H. Sayama, Adaptive Networks, Springer, Berlin, 2009.
[15] D. Guo, S. Trajanovski, R. van de Bovenkamp, H. Wang, and P. Van Mieghem, Epidemic threshold and topological structure of susceptible-infectious-susceptible epidemics in adaptive networks, Phys. Rev. E, 88 (2013), 042802, https://doi.org/10.1103/PhysRevE.88.042802.
[16] S. Han, V. M. Preciado, C. Nowzari, and G. J. Pappas, Data-driven network resource allocation for controlling spreading processes, IEEE Trans. Network Sci. Eng., 2 (2015), pp. 127-138, https://doi.org/10.1109/TNSE.2015.2500158.
[17] P. Holme, Modern temporal network theory: A colloquium, European Phys. J. B, 88 (2015); also available from https://arxiv.org/abs/1508.01303.
[18] P. Holme and J. Saramäki, Temporal networks, Phys. Rep., 519 (2012), pp. 97-125.
[19] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J. F. Pinton, and W. Van den Broeck, What’s in a crowd? Analysis of face-to-face behavioral networks, J. Theoret. Biol., 271 (2011), pp. 166-180, https://doi.org/10.1016/j.jtbi.2010.11.033. · Zbl 1405.92255
[20] M. Karsai, N. Perra, and A. Vespignani, Time varying networks and the weakness of strong ties, Sci. Rep., 4 (2014), 4001, https://doi.org/10.1038/srep04001.
[21] M. Ki, 2015 MERS outbreak in Korea: Hospital-to-hospital transmission, Epidemiol. Health, 37 (2015), e2015033, https://doi.org/10.4178/epih/e2015033.
[22] I. Z. Kiss, J. C. Miller, and P. L. Simon, Mathematics of Epidemics on Networks, Springer, Berlin, 2017. · Zbl 1373.92001
[23] M. Klamkin and D. Newman, Extensions of the Weierstrass product inequalities, Math. Mag., 43 (1970), pp. 137-141, https://doi.org/10.2307/2688388. · Zbl 0193.01601
[24] C. Lagorio, M. Dickison, F. Vazquez, L. A. Braunstein, P. A. Macri, M. V. Migueles, S. Havlin, and H. E. Stanley, Quarantine-generated phase transition in epidemic spreading, Phys. Rev. E, 83 (2011), 026102, https://doi.org/10.1103/PhysRevE.83.026102.
[25] A. Lajmanovich and J. A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28 (1976), pp. 221-236, https://doi.org/10.1016/0025-5564(76)90125-5. · Zbl 0344.92016
[26] S. Lee, L. E. C. Rocha, F. Liljeros, and P. Holme, Exploiting temporal network structures of human interaction to effectively immunize populations, PloS One, 7 (2012), e36439, https://doi.org/10.1371/journal.pone.0036439.
[27] S. Liu, N. Perra, M. Karsai, and A. Vespignani, Controlling contagion processes in activity driven networks, Phys. Rev. Lett., 112 (2014), 118702, https://doi.org/10.1103/PhysRevLett.112.118702.
[28] S. Maharaj and A. Kleczkowski, Controlling epidemic spread by social distancing: Do it well or not at all, BMC Public Health, 12 (2012), 679, https://doi.org/10.1186/1471-2458-12-679.
[29] V. Marceau, P. A. Noël, L. Hébert-Dufresne, A. Allard, and L. J. Dubé, Adaptive networks: Coevolution of disease and topology, Phys. Rev. E, 82 (2010), 036116, https://doi.org/10.1103/PhysRevE.82.036116.
[30] N. Masuda and P. Holme, Predicting and controlling infectious disease epidemics using temporal networks, F1000Prime Reports, 5 (2013), https://doi.org/10.12703/P5-6.
[31] N. Masuda and P. Holme, Temporal Network Epidemiology, Springer, Berlin, 2017, https://doi.org/10.1007/978-981-10-5287-3. · Zbl 1383.92006
[32] N. Masuda and R. Lambiotte, A Guide to Temporal Networks, World Scientific, River Edge, NJ, 2016. · Zbl 1376.60001
[33] M. Ogura and V. M. Preciado, Epidemic processes over adaptive state-dependent networks, Phys. Rev. E, 93 (2016), 062316, https://doi.org/10.1103/PhysRevE.93.062316.
[34] M. Ogura and V. M. Preciado, Stability of spreading processes over time-varying large-scale networks, IEEE Trans. Network Sci. Eng., 3 (2016), pp. 44-57, https://doi.org/10.1109/TNSE.2016.2516346.
[35] M. Ogura and V. M. Preciado, Optimal Containment of Epidemics in Temporal and Adaptive Networks, in Temporal Network Epidemiology, Springer, Berlin, 2017, pp. 241-266, https://doi.org/10.1007/978-981-10-5287-3. · Zbl 1401.92198
[36] M. Ogura and V. M. Preciado, Second-order moment-closure for tighter epidemic thresholds, Systems Control Lett., 113 (2018), pp. 59-64, https://doi.org/10.1016/j.sysconle.2018.01.006. · Zbl 1386.93270
[37] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani, Epidemic processes in complex networks, Rev. Modern Phys., 87 (2015), pp. 925-979, arXiv:1408.2701.
[38] N. Perra, A. Baronchelli, D. Mocanu, B. Gonçalves, R. Pastor-Satorras, and A. Vespignani, Random walks and search in time-varying networks, Phys. Rev. Lett., 109 (2012), 238701, https://doi.org/10.1103/PhysRevLett.109.238701.
[39] N. Perra, B. Gonçalves, R. Pastor-Satorras, and A. Vespignani, Activity driven modeling of time varying networks, Sci. Rep., 2 (2012), https://doi.org/10.1038/srep00469.
[40] B. A. Prakash, H. Tong, N. Valler, M. Faloutsos, and C. Faloutsos, Virus propagation on time-varying networks: Theory and immunization algorithms, in Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2010, pp. 99-114.
[41] V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. J. Pappas, Optimal resource allocation for network protection against spreading processes, IEEE Trans. Control Netw. Syst., 1 (2014), pp. 99-108, https://doi.org/10.1109/TCNS.2014.2310911. · Zbl 1370.90048
[42] T. C. Reluga, Game theory of social distancing in response to an epidemic, PLoS Comput. Biol., 6 (2010), e1000793, https://doi.org/10.1371/journal.pcbi.1000793.
[43] B. Ribeiro, N. Perra, and A. Baronchelli, Quantifying the effect of temporal resolution on time-varying networks, Sci. Rep., 3 (2013), 3006, https://doi.org/10.1038/srep03006.
[44] A. Rizzo, M. Frasca, and M. Porfiri, Effect of individual behavior on epidemic spreading in activity-driven networks, Phys. Rev. E, 90 (2014), 042801, https://doi.org/10.1103/PhysRevE.90.042801.
[45] H. Sayama, I. Pestov, J. Schmidt, B. J. Bush, C. Wong, J. Yamanoi, and T. Gross, Modeling complex systems with adaptive networks, Comput. Math. Appl., 65 (2013), pp. 1645-1664, https://doi.org/10.1016/j.camwa.2012.12.005. · Zbl 1345.90021
[46] L. Speidel, K. Klemm, V. M. Eguíluz, and N. Masuda, Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model, New J. Phys., 18 (2016), 073013, https://doi.org/10.1088/1367-2630/18/7/073013. · Zbl 1456.92144
[47] M. Starnini and R. Pastor-Satorras, Topological properties of a time-integrated activity-driven network, Phys. Rev. E, 87 (2013), 062807, https://doi.org/10.1103/PhysRevE.87.062807.
[48] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J. F. Pinton, M. Quaggiotto, W. van den Broeck, C. Régis, B. Lina, and P. Vanhems, High-resolution measurements of face-to-face contact patterns in a primary school, PLoS ONE, 6 (2011), e23176, arXiv:1109.1015.
[49] L. Sun, K. W. Axhausen, D.-H. Lee, and X. Huang, Understanding metropolitan patterns of daily encounters, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 13774-13779, https://doi.org/10.1073/pnas.1306440110.
[50] I. Tunc and L. B. Shaw, Effects of community structure on epidemic spread in an adaptive network, Phys. Rev. E, 90 (2014), 022801, https://doi.org/10.1103/PhysRevE.90.022801.
[51] E. Ubaldi, N. Perra, M. Karsai, A. Vezzani, R. Burioni, and A. Vespignani, Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation, Sci. Rep., 6 (2016), 35724, https://doi.org/10.1038/srep35724.
[52] P. Van Mieghem, J. Omic, and R. Kooij, Virus spread in networks, IEEE/ACM Trans. Netw., 17 (2009), pp. 1-14, https://doi.org/10.1109/TNET.2008.925623.
[53] Y. Wan, S. Roy, and A. Saberi, Designing spatially heterogeneous strategies for control of virus spread, IET Syst. Biol., 2 (2008), pp. 184-201, https://doi.org/10.1049/iet-syb:20070040.
[54] D. H. Zanette and S. Risau-Gusmán, Infection spreading in a population with evolving contacts, J. Biol. Phys., 34 (2008), pp. 135-148, https://doi.org/10.1007/s10867-008-9060-9.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.