×

Exploring concurrency and reachability in the presence of high temporal resolution. (English) Zbl 1540.90046

Holme, Petter (ed.) et al., Temporal network theory. Cham: Springer. Comput. Soc. Sci., 131-147 (2023).
Summary: Network properties govern the rate and extent of spreading processes on networks, from simple contagions to complex cascades. Recent advances have extended the study of spreading processes from static networks to temporal networks, where nodes and links appear and disappear. We review previous studies on the effects of temporal connectivity for understanding the spreading rate and outbreak size of model infection processes. We focus on the effects of “accessibility”, whether there is a temporally consistent path from one node to another, and “reachability”, the density of the corresponding “accessibility graph” representation of the temporal network. We study reachability in terms of the overall level of temporal concurrency between edges, quantifying the overlap of edges in time. We explore the role of temporal resolution of contacts by calculating reachability with the full temporal information as well as with a simplified interval representation approximation that demands less computation. We demonstrate the extent to which the computed reachability changes due to this simplified interval representation.
For the entire collection see [Zbl 1531.90014].

MSC:

90B10 Deterministic network models in operations research
Full Text: DOI

References:

[1] Armbruster, B.; Wang, L.; Morris, M., Forward reachable sets: analytically derived properties of connected components for dynamic networks, Netw. Sci., 5, 3, 328-354, 2017 · doi:10.1017/nws.2017.10
[2] Daley, DJ; Kendall, DG, Epidemics and rumours, Nature, 204, 4963, 1118, 1964 · doi:10.1038/2041118a0
[3] Doherty, IA; Shiboski, S.; Ellen, JM; Adimora, AA; Padian, NS, Sexual Bridging Socially and Over Time: A Simulation Model Exploring the Relative Effects of Mixing and Concurrency on Viral Sexually Transmitted Infection Transmission, Sex. Transm. Dis., 33, 6, 368-373, 2006 · doi:10.1097/01.olq.0000194586.66409.7a
[4] Eames, KTD; Keeling, MJ, Monogamous networks and the spread of sexually transmitted diseases, Math. Biosci., 189, 2, 115-130, 2004 · Zbl 1048.92028 · doi:10.1016/j.mbs.2004.02.003
[5] Epstein, H.; Morris, M., Concurrent partnerships and HIV: an inconvenient truth, J. Int. AIDS Soc., 14, 1, 13-13, 2011 · doi:10.1186/1758-2652-14-13
[6] Fournet, J.; Barrat, A., Contact patterns among high school students, PLoS One, 9, 9, 1-17, 2014 · doi:10.1371/journal.pone.0107878
[7] Gernat, T.; Rao, VD; Middendorf, M.; Dankowicz, H.; Goldenfeld, N.; Robinson, GE, Automated monitoring of behavior reveals bursty interaction patterns and rapid spreading dynamics in honeybee social networks, Proc. Natl. Acad. Sci. USA, 115, 7, 1433-1438, 2018 · doi:10.1073/pnas.1713568115
[8] Gurski, K.; Hoffman, K., Influence of concurrency, partner choice, and viral suppression on racial disparity in the prevalence of HIV infected women, Math. Biosci., 282, 91-108, 2016 · Zbl 1352.92152 · doi:10.1016/j.mbs.2016.09.009
[9] Holme, P., Network reachability of real-world contact sequences, Phys. Rev. E, 71, 2005 · doi:10.1103/PhysRevE.71.046119
[10] Holme, P.; Liljeros, F., Birth and death of links control disease spreading in empirical contact networks, Sci. Rep., 4, 1, 4999, 2015 · doi:10.1038/srep04999
[11] Holme, P.; Saramäki, J., Temporal networks, Phys. Rep., 519, 3, 97-125, 2012 · doi:10.1016/j.physrep.2012.03.001
[12] Isella, L.; Stehlé, J.; Barrat, A.; Cattuto, C.; Pinton, JF; den Broeck, WV, What’s in a crowd? analysis of face-to-face behavioral networks, J. Theor. Biol., 271, 1, 166-180, 2011 · Zbl 1405.92255 · doi:10.1016/j.jtbi.2010.11.033
[13] Karsai, M.; Kivelä, M.; Pan, RK; Kaski, K.; Kertész, J.; Barabási, AL; Saramäki, J., Small but slow world: how network topology and burstiness slow down spreading, Phys. Rev. E, 83, 2011 · doi:10.1103/PhysRevE.83.025102
[14] Kretzschmar, M.; Morris, M., Measures of concurrency in networks and the spread of infectious disease, Math. Biosci., 133, 2, 165-195, 1996 · Zbl 0844.92022 · doi:10.1016/0025-5564(95)00093-3
[15] E. Lee, S. Emmons, R. Gibson, J. Moody, P.J. Mucha, Concurrency and reachability in treelike temporal networks. Phys. Rev. E 100, 062305 (2019)
[16] Lentz, HHK; Selhorst, T.; Sokolov, IM, Unfolding accessibility provides a macroscopic approach to temporal networks, Phys. Rev. Lett., 110, 2013 · doi:10.1103/PhysRevLett.110.118701
[17] Li, M.; Rao, VD; Gernat, T.; Dankowicz, H., Lifetime-preserving reference models for characterizing spreading dynamics on temporal networks, Sci. Rep., 8, 1, 709, 2018 · doi:10.1038/s41598-017-18450-3
[18] M.N. Lurie, S. Rosenthal, The concurrency hypothesis in sub-Saharan Africa: convincing empirical evidence is still lacking. Response to Mah and Halperin, Epstein, and Morris. AIDS Behav.14(1), 34-37 (2010)
[19] Mah, TL; Halperin, DT, The evidence for the role of concurrent partnerships in Africa’s HIV epidemics: a response to Lurie and Rosenthal, AIDS Behav., 14, 1, 25-28, 2010 · doi:10.1007/s10461-009-9617-z
[20] N. Masuda, R. Lambiotte, A guide to temporal networks. World Sci. (2016) · Zbl 1376.60001
[21] Masuda, N.; Klemm, K.; Eguíluz, VM, Temporal networks: slowing down diffusion by long lasting interactions, Phys. Rev. Lett., 111, 2013 · doi:10.1103/PhysRevLett.111.188701
[22] R.M. May, R.M. Anderson, Transmission dynainics of HIV infection. Nature 326 (1987)
[23] May, RM; Anderson, RM, The transmission dynamics of human immunodeficiency virus (HIV), Trans. R. Soc. Land. B, 321, 565-607, 1988
[24] Miller, JC; Slim, AC, Saturation effects and the concurrency hypothesis: insights from an analytic model, PLoS One, 12, 11, 2017 · doi:10.1371/journal.pone.0187938
[25] Moody, J., The importance of relationship timing for diffusion: indirect connectivity and STD infections risk, Soc. Forces, 81, 1, 25-56, 2002 · doi:10.1353/sof.2002.0056
[26] Moody, J.; Benton, RA, Interdependent effects of cohesion and concurrency for epidemic potential, Ann. Epidemiol., 26, 4, 241-248, 2016 · doi:10.1016/j.annepidem.2016.02.011
[27] Moody, J.; White, DR, Structural cohesion and embeddedness: a hierarchical concept of social groups, Am. Sociol. Rev., 68, 1, 103-127, 2003 · doi:10.1177/000312240306800105
[28] Morris, M.; Kretzschmar, M., Concurrent partnerships and transmission dynamics in networks, Soc. Netw., 17, 3, 299-318, 1995 · doi:10.1016/0378-8733(95)00268-S
[29] Morris, M.; Epstein, H.; Wawer, M., Timing is everything: international variations in historical sexual partnership concurrency and HIV prevalence, PLoS One, 5, 11, 2010 · doi:10.1371/journal.pone.0014092
[30] Onaga, T.; Gleeson, JP; Masuda, N., Concurrency-induced transitions in epidemic dynamics on temporal networks, Phys. Rev. Lett., 119, 2017 · doi:10.1103/PhysRevLett.119.108301
[31] Rocha, LEC; Liljeros, F.; Holme, P., Information dynamics shape the sexual networks of internet-mediated prostitution, Proc. Natl. Acad. Sci., 107, 13, 5706-5711, 2010 · Zbl 1205.91145 · doi:10.1073/pnas.0914080107
[32] Rocha, LEC; Liljeros, F.; Holme, P., Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts, PLoS Comput. Biol., 7, 3, 1-9, 2011 · doi:10.1371/journal.pcbi.1001109
[33] Vazquez, A.; Rácz, B.; Lukács, A.; Barabási, AL, Impact of non-poissonian activity patterns on spreading processes, Phys. Rev. Lett., 98, 2007 · doi:10.1103/PhysRevLett.98.158702
[34] Watts, CH; May, RM, The influence of concurrent partnerships on the dynamics of HIV/AIDS, Math. Biosci., 108, 1, 89-104, 1992 · Zbl 1353.92104 · doi:10.1016/0025-5564(92)90006-I
[35] D.R. White, M. Newman, Fast approximation algorithms for finding node-independent paths in networks. SSRN Electron. J. (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.