×

Components in time-varying graphs. (English) Zbl 1331.68156

Summary: Real complex systems are inherently time-varying. Thanks to new communication systems and novel technologies, today it is possible to produce and analyze social and biological networks with detailed information on the time of occurrence and duration of each link. However, standard graph metrics introduced so far in complex network theory are mainly suited for static graphs, i.e., graphs in which the links do not change over time, or graphs built from time-varying systems by aggregating all the links as if they were concurrent in time. In this paper, we extend the notion of connectedness, and the definitions of node and graph components, to the case of time-varying graphs, which are represented as time-ordered sequences of graphs defined over a fixed set of nodes. We show that the problem of finding strongly connected components in a time-varying graph can be mapped into the problem of discovering the maximal-cliques in an opportunely constructed static graph, which we name the affine graph. It is, therefore, an NP-complete problem. As a practical example, we have performed a temporal component analysis of time-varying graphs constructed from three data sets of human interactions. The results show that taking time into account in the definition of graph components allows to capture important features of real systems. In particular, we observe a large variability in the size of node temporal in- and out-components. This is due to intrinsic fluctuations in the activity patterns of individuals, which cannot be detected by static graph analysis.{
©2012 American Institute of Physics}

MSC:

68R10 Graph theory (including graph drawing) in computer science
05C20 Directed graphs (digraphs), tournaments
05C40 Connectivity
05C82 Small world graphs, complex networks (graph-theoretic aspects)
05C90 Applications of graph theory

References:

[1] DOI: 10.1016/j.physrep.2005.10.009 · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[2] DOI: 10.1016/j.physrep.2008.09.002 · doi:10.1016/j.physrep.2008.09.002
[3] DOI: 10.1016/j.physa.2003.10.007 · doi:10.1016/j.physa.2003.10.007
[4] DOI: 10.1103/PhysRevE.71.046119 · doi:10.1103/PhysRevE.71.046119
[5] DOI: 10.1145/1400214.1400232 · doi:10.1145/1400214.1400232
[6] G. Kossinets, J. Kleinberg, and D. Watts, in Proceedings of ACM SIGKDD’08 (ACM Press, 2008), p. 435.
[7] DOI: 10.1016/j.jtbi.2010.11.033 · Zbl 1405.92255 · doi:10.1016/j.jtbi.2010.11.033
[8] DOI: 10.1038/nature06958 · doi:10.1038/nature06958
[9] DOI: 10.1209/0295-5075/82/38002 · doi:10.1209/0295-5075/82/38002
[10] DOI: 10.1016/S0378-4371(01)00014-0 · Zbl 0978.68108 · doi:10.1016/S0378-4371(01)00014-0
[11] DOI: 10.1371/journal.pcbi.0030103 · doi:10.1371/journal.pcbi.0030103
[12] DOI: 10.1073/pnas.0901910106 · doi:10.1073/pnas.0901910106
[13] DOI: 10.1103/PhysRevE.77.050905 · doi:10.1103/PhysRevE.77.050905
[14] DOI: 10.1088/1751-8113/41/22/224014 · doi:10.1088/1751-8113/41/22/224014
[15] DOI: 10.1016/S0378-4371(02)00736-7 · Zbl 0996.91086 · doi:10.1016/S0378-4371(02)00736-7
[16] A. Clauset and N. Eagle, in Proceedings of DIMACS’07 (2007).
[17] DOI: 10.1103/PhysRevE.83.045102 · doi:10.1103/PhysRevE.83.045102
[18] DOI: 10.1103/PhysRevE.81.035101 · doi:10.1103/PhysRevE.81.035101
[19] DOI: 10.1098/rspa.2009.0456 · Zbl 1195.05075 · doi:10.1098/rspa.2009.0456
[20] DOI: 10.1126/science.1184819 · Zbl 1226.91056 · doi:10.1126/science.1184819
[21] DOI: 10.1103/PhysRevE.83.025101 · doi:10.1103/PhysRevE.83.025101
[22] Tang J., Proceedings of ACM WOSN’09 (2009)
[23] Tang J., Proceedings of ACM SNS’10 (2010)
[24] Tang J., Proceedings of IEEE WOWMOM’11 (2011)
[25] DOI: 10.1353/sof.2002.0057 · doi:10.1353/sof.2002.0057
[26] DOI: 10.1073/pnas.0914080107 · Zbl 1205.91145 · doi:10.1073/pnas.0914080107
[27] DOI: 10.1006/jcss.2002.1829 · Zbl 1015.68005 · doi:10.1006/jcss.2002.1829
[28] DOI: 10.1016/S0166-218X(02)00497-3 · Zbl 1019.05037 · doi:10.1016/S0166-218X(02)00497-3
[29] DOI: 10.1103/PhysRevE.83.046120 · doi:10.1103/PhysRevE.83.046120
[30] DOI: 10.1016/j.physa.2008.11.021 · doi:10.1016/j.physa.2008.11.021
[31] DOI: 10.1103/PhysRevE.81.055101 · doi:10.1103/PhysRevE.81.055101
[32] DOI: 10.1103/PhysRevE.84.016105 · doi:10.1103/PhysRevE.84.016105
[33] DOI: 10.1016/S1389-1286(00)00083-9 · doi:10.1016/S1389-1286(00)00083-9
[34] DOI: 10.1038/35019019 · doi:10.1038/35019019
[35] DOI: 10.1103/PhysRevE.64.025101 · doi:10.1103/PhysRevE.64.025101
[36] DOI: 10.1007/978-1-4684-2001-2_9 · doi:10.1007/978-1-4684-2001-2_9
[37] West D. B., Introduction to Graph Theory, 2. ed. (2001)
[38] DOI: 10.1016/0304-3975(94)00097-3 · Zbl 0873.68059 · doi:10.1016/0304-3975(94)00097-3
[39] DOI: 10.1007/BF02760024 · Zbl 0144.23205 · doi:10.1007/BF02760024
[40] DOI: 10.1145/362342.362367 · Zbl 0261.68018 · doi:10.1145/362342.362367
[41] Feige U., Proceedings of IEEE SFCS’91 (1991)
[42] DOI: 10.1145/273865.273901 · Zbl 0903.68076 · doi:10.1145/273865.273901
[43] DOI: 10.1145/278298.278306 · Zbl 1065.68570 · doi:10.1145/278298.278306
[44] DOI: 10.1137/0206038 · Zbl 0357.68035 · doi:10.1137/0206038
[45] DOI: 10.1016/0196-6774(86)90032-5 · Zbl 0637.68080 · doi:10.1016/0196-6774(86)90032-5
[46] DOI: 10.1007/s00779-005-0046-3 · doi:10.1007/s00779-005-0046-3
[47] Scott J., CRAWDAD Trace (2006)
[48] Wilson C., Proceedings of ACM EuroSys’09 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.