×

A graphical criterion for the controllability in temporal networks. (English) Zbl 07893013

Summary: Link temporality is a fundamental characteristic of diverse real networks across various domains, posing challenges in comprehending and controlling complex systems. The ultimate goal of understanding complex systems is to effectively manipulate them from their initial state to a desired state. Previous studies have predominantly focused on static networks due to computational complexity in analyzing temporal networks. In this study, we aim to enhance our understanding of link temporality and propose a graphical criterion for evaluating the dimension of controllable space in temporal systems by utilizing maximum matching in their aggregated static counterparts. This criterion overcomes the computation constraints associated with controlling large networks. We validated our graphical criterion in multiple temporal networks including model and real temporal networks, and observed that temporal networks with more degree-homogeneous snapshots are easier to be controlled. Moreover, we revealed that temporal process can disrupt the linear dependence of signals and found that the pivotal role of leaf links in expanding the dimension of controllable space in temporal networks.

MSC:

82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Lin, C.-T., Structural controllability, IEEE Trans. Autom. Control, 19, 3, 201-208, 1974 · Zbl 0282.93011
[2] Shields, R.; Pearson, J., Structural controllability of multiinput linear systems, IEEE Trans. Autom. control, 21, 2, 203-212, 1976 · Zbl 0324.93007
[3] Liu, X.; Teo, K.-L.; Zhang, H.; Chen, G., Switching control of linear systems for generating chaos, Chaos Solitons Fract., 30, 3, 725-733, 2006 · Zbl 1143.93322
[4] Nepusz, T.; Vicsek, T., Controlling edge dynamics in complex networks, Nat. Phys., 8, 7, 568-573, 2012
[5] Yan, G.; Ren, J.; Lai, Y.-C.; Lai, C.-H.; Li, B., Controlling complex networks: How much energy is needed?, Phys. Rev. Lett., 108, 21, Article 218703 pp., 2012
[6] Sun, J.; Motter, A. E., Controllability transition and nonlocality in network control, Phys. Rev. Lett., 110, 20, Article 208701 pp., 2013
[7] Cornelius, S. P.; Kath, W. L.; Motter, A. E., Realistic control of network dynamics, Nat. Commun., 4, 1, 1-9, 2013
[8] Ruths, J.; Ruths, D., Control profiles of complex networks, Science, 343, 6177, 1373-1376, 2014 · Zbl 1355.90012
[9] Xie, G.; Zheng, D.; Wang, L., Controllability of switched linear systems, IEEE Trans. Autom. Control, 47, 8, 1401-1405, 2002 · Zbl 1364.93075
[10] Zhang, X.-Y.; Sun, J.; Yan, G., Why temporal networks are more controllable: Link weight variation offers superiority, Phys. Rev. Res., 3, 3, L032045, 2021
[11] Gao, J.; Liu, Y.-Y.; D’souza, R. M.; Barabási, A.-L., Target control of complex networks, Nat. Commun., 5, 1, 1-8, 2014
[12] Pósfai, M.; Hövel, P., Structural controllability of temporal networks, New J. Phys., 16, 12, Article 123055 pp., 2014
[13] Pan, Y.; Li, X., Structural controllability and controlling centrality of temporal networks, PloS ONE, 9, 4, Article e94998 pp., 2014
[14] Li, A.; Cornelius, S. P.; Liu, Y.-Y.; Wang, L.; Barabási, A.-L., The fundamental advantages of temporal networks, Science, 358, 6366, 1042-1046, 2017
[15] Zhang, Y.; Garas, A.; Scholtes, I., Higher-order models capture changes in controllability of temporal networks, J. Phys. Compl., 2020
[16] Holme, P.; Saramäki, J., Temporal networks, Phys. Rep., 519, 3, 97-125, 2012
[17] Bassett, D. S.; Wymbs, N. F.; Porter, M. A.; Mucha, P. J.; Carlson, J. M.; Grafton, S. T., Dynamic reconfiguration of human brain networks during learning, Proc. Natl. Acad. Sci. USA, 108, 18, 7641-7646, 2011
[18] Sekara, V.; Stopczynski, A.; Lehmann, S., Fundamental structures of dynamic social networks, Proc. Natl. Acad. Sci. USA, 113, 36, 9977-9982, 2016
[19] Ji, Y.; He, W.; Cheng, S.; Kurths, J.; Zhan, M., Dynamic network characteristics of power-electronics-based power systems, Sci. Rep., 10, 1, 1-16, 2020
[20] Gross, T.; D’Lima, C. J.D.; Blasius, B., Epidemic dynamics on an adaptive network, Phys. Rev. Lett., 96, 20, Article 208701 pp., 2006
[21] Masuda, N.; Klemm, K.; Eguíluz, V. M., Temporal networks: Slowing down diffusion by long lasting interactions, Phys. Rev. Lett., 111, 18, Article 188701 pp., 2013
[22] Scholtes, I.; Wider, N.; Pfitzner, R.; Garas, A.; Tessone, C. J.; Schweitzer, F., Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks, Nat. Commun., 5, 1, 1-9, 2014
[23] Valdano, E.; Ferreri, L.; Poletto, C.; Colizza, V., Analytical computation of the epidemic threshold on temporal networks, Phys. Rev. X, 5, 2, Article 021005 pp., 2015
[24] De Domenico, M.; Granell, C.; Porter, M. A.; Arenas, A., The physics of spreading processes in multilayer networks, Nat. Phys., 12, 10, 901-906, 2016
[25] Williams, O. E.; Lillo, F.; Latora, V., Effects of memory on spreading processes in non-Markovian temporal networks, New J. Phys., 21, 4, Article 043028 pp., 2019
[26] Koher, A.; Lentz, H. H.; Gleeson, J. P.; Hövel, P., Contact-based model for epidemic spreading on temporal networks, Phys. Rev. X, 9, 3, Article 031017 pp., 2019
[27] Yu, X.; Liang, Y.; Wang, X.; Jia, T., The network asymmetry caused by the degree correlation and its effect on the bimodality in control, Phys. A, 572, Article 125868 pp., 2021
[28] Liu, Y.-Y.; Slotine, J.-J.; Barabási, A.-L., Controllability of complex networks, Nature, 473, 7346, 167-173, 2011
[29] Gu, S.; Pasqualetti, F.; Cieslak, M.; Telesford, Q. K.; Alfred, B. Y.; Kahn, A. E.; Medaglia, J. D.; Vettel, J. M.; Miller, M. B.; Grafton, S. T.; Bassett, D. S., Controllability of structural brain networks, Nat. Commun., 6, 1, 1-10, 2015
[30] Iudice, F. L.; Garofalo, F.; Sorrentino, F., Structural permeability of complex networks to control signals, Nat. Commun., 6, 1, 1-6, 2015
[31] Menichetti, G.; DallÁsta, L.; Bianconi, G., Control of multilayer networks, Sci. Rep., 6, 20706, 2016
[32] Liu, X.; Pan, L.; Stanley, H. E.; Gao, J., Controllability of giant connected components in a directed network, Phys. Rev. E, 95, 4, Article 042318 pp., 2017
[33] Yan, G.; Vértes, P. E.; Towlson, E. K.; Chew, Y. L.; Walker, D. S.; Schafer, W. R.; Barabási, A.-L., Network control principles predict neuron function in the caenorhabditis elegans connectome, Nature, 550, 7677, 519-523, 2017
[34] Xiang, L.; Chen, F.; Ren, W.; Chen, G., Advances in network controllability, IEEE Circuits Syst. Mag., 19, 2, 8-32, 2019
[35] Coron, J.-M., Control and Nonlinearity, (Mathematical Surveys and Monographs, vol. 136, 2009, American Mathematical Society: American Mathematical Society Providence, Rhode Island)
[36] Liu, Y.-Y.; Barabási, A.-L., Control principles of complex systems, Rev. Modern Phys., 88, 3, Article 035006 pp., 2016
[37] Klickstein, I.; Shirin, A.; Sorrentino, F., Locally optimal control of complex networks, Phys. Rev. Lett., 119, 26, Article 268301 pp., 2017
[38] Savkin, A. V.; Matveev, A. S., A switched server system of order n with all its trajectories converging to (n- 1)! limit cycles, Automatica, 37, 2, 303-306, 2001 · Zbl 0967.93069
[39] Chase, C.; Serrano, J.; Ramadge, P. J., Periodicity and chaos from switched flow systems: Contrasting examples of discretely controlled continuous systems, IEEE Trans. Autom. Control, 38, 1, 70-83, 1993 · Zbl 0773.93050
[40] Shorten, R.; Wirth, F.; Mason, O.; Wulff, K.; King, C., Stability criteria for switched and hybrid systems, SIAM Rev., 49, 4, 545-592, 2007 · Zbl 1127.93005
[41] Du, W.; Li, S.; Chen, S.; Latora, V. C.; Cao, X., Optimality and bimodality in controlling temporal networks, IEEE Trans. Netw. Sci. Eng., 2023
[42] Michalski, R.; Palus, S.; Kazienko, P., Matching organizational structure and social network extracted from email communication, (Intl. Conf. Bus. Inf. Syst., 2011, Springer), 197-206
[43] Isella, L.; Stehlé, J.; Barrat, A.; Cattuto, C.; Pinton, J.-F.; Van den Broeck, W., What’s in a crowd? Analysis of face-to-face behavioral networks, J. Theoret. Biol., 271, 1, 166-180, 2011 · Zbl 1405.92255
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.