×

Modularity-based selection of the number of slices in temporal network clustering. (English) Zbl 07822888

Holme, Petter (ed.) et al., Temporal network theory. Cham: Springer. Comput. Soc. Sci., 435-447 (2023).
Summary: A popular way to cluster a temporal network is to transform it into a sequence of networks, also called slices, where each slice corresponds to a time interval and contains the vertices and edges existing in that interval. A reason to perform this transformation is that after a network has been sliced, existing algorithms designed to find clusters in multilayer networks can be used. However, to use this approach, we need to know how many slices to generate. This chapter discusses how to select the number of slices when generalized modularity is used to identify the clusters.
For the entire collection see [Zbl 1531.90014].

MSC:

68-XX Computer science

References:

[1] T. Aynaud, J.L. Guillaume, in 5th SNA-KDD Workshop, vol. 11 (2011)
[2] Berlingerio, M.; Pinelli, F.; Calabrese, F., Data Mining Knowl. Discov., 27, 3, 294, 2013 · Zbl 1281.68173 · doi:10.1007/s10618-013-0331-0
[3] Boccaletti, S.; Bianconi, G.; Criado, R.; del Genio, CI; Gómez-Gardeñes, J.; Romance, M.; Sendiña-Nadal, I.; Wang, Z.; Zanin, M., Phys. Rep., 544, 1, 1, 2014 · doi:10.1016/j.physrep.2014.07.001
[4] C. Bothorel, J. Cruz, M. Magnani, B. Micenková, Netw. Sci. 3(3) (2015)
[5] Boutemine, O.; Bouguessa, M., ACM Trans. Knowl. Disc. Data, 11, 4, 1, 2017 · doi:10.1145/3080574
[6] Chaintreau, A.; Hui, P.; Crowcroft, J.; Diot, C.; Gass, R.; Scott, J., IEEE Trans. Mob. Comput., 6, 6, 606, 2007 · doi:10.1109/TMC.2007.1060
[7] J.S. Coleman, Introduction to Mathematical Sociology (Free Press of Glencoe, 1964)
[8] Coscia, M.; Giannotti, F.; Pedreschi, D., Statistical analysis and data mining: the ASA, Data Sci. J., 4, 5, 512, 2011
[9] C. De Bacco, E.A. Power, D.B. Larremore, C. Moore, Phys. Rev. E 95(4) (2017)
[10] M. De Domenico, A. Lancichinetti, A. Arenas, M. Rosvall, Phys. Rev. X 5(1) (2015)
[11] Dickison, ME; Magnani, M.; Rossi, L., Multilayer Social Networks, 2016, Cambridge: Cambridge University Press, Cambridge · doi:10.1017/CBO9781139941907
[12] Fortunato, S., Phys. Rep., 486, 3, 75, 2010 · doi:10.1016/j.physrep.2009.11.002
[13] L. Gauvin, M. Génois, M. Karsai, M. Kivelä, T. Takaguchi, E. Valdano, C.L. Vestergaard, (2018). arXiv:1806.04032v1
[14] J. He, D. Chen, C. Sun, Y. Fu, W. Li, Physica A: Stat. Mech. Appl. 469 (2017)
[15] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.F. Pinton, W.V.D. Broeck, J. Theor. Biol. 271(1), 166 (2011) · Zbl 1405.92255
[16] M. Karsai, M. Kivelä, R. Pan, K. Kaski, J. Kertéz, A.L. Barabási, J. Saramäki, Phys. Rev. 83 (2011)
[17] Kivela, M.; Arenas, A.; Barthelemy, M.; Gleeson, JP; Moreno, Y.; Porter, MA, J. Complex Netw., 2, 3, 203, 2014 · doi:10.1093/comnet/cnu016
[18] M. Magnani, O. Hanteer, R. Interdonato, L. Rossi, A. Tagarelli, ACM Comput. Surv. 54(3) (2021)
[19] C. Matias, V. Miele, J. R. Stat. Soc.: Ser. B (Statistical Methodology) 79 (2017)
[20] Mucha, PJ; Richardson, T.; Macon, K.; Porter, MA; Onnela, JP, Science, 328, 5980, 876, 2010 · Zbl 1226.91056 · doi:10.1126/science.1184819
[21] G. Palla, A.L. Barábasi, T. Vicsek, Nature 446 (2007)
[22] G. Rossetti, L. Pappalardo1, D. Pedreschi, F. Giannotti, Mach. Learn. 106 (2017)
[23] M. Rosvall, C. Bergstrom, Proc. Natl. Acad. Sci. USA 105 (2008)
[24] Tagarelli, A.; Amelio, A.; Gullo, F., Data Mining Knowl. Discov., 31, 5, 1506, 2017 · Zbl 1411.68122 · doi:10.1007/s10618-017-0528-8
[25] N.A. Tehrani, M. Magnani, in Social Informatics—10th International Conference, vol. 11186 (Springer, 2018), pp. 15-28
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.