×

Topological epidemic model: theoretical insight into underlying networks. (English) Zbl 1451.92291

Summary: Although there are various models of epidemic diseases, there are a few individual-based models that can guide susceptible individuals on how they should behave in a pandemic without its appropriate treatment. Such a model would be ideal for the current coronavirus disease 2019 (COVID-19) pandemic. Thus, here, we propose a topological model of an epidemic disease, which can take into account various types of interventions through a time-dependent contact network. Based on this model, we show that there is a maximum allowed number of persons one can see each day for each person so that we can suppress the epidemic spread. Reducing the number of persons to see for the hub persons is a key countermeasure for the current COVID-19 pandemic.
©2020 American Institute of Physics

MSC:

92D30 Epidemiology

References:

[1] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, 115, 700-721 (1927) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[2] Bagni, R.; Berchi, R.; Cariello, P., A comparison of simulation models applied to epidemics, J. Artif. Soc. Soc. Simul., 5, 3 (2002)
[3] Schentzle, D., An age-structured model of pre- and post-vaccination measles transmission, IMA J. Math. Appl. Med. Biol., 1, 169-191 (1984) · Zbl 0611.92021 · doi:10.1093/imammb/1.2.169
[4] Barabási, A.-L., Network Science (2016), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1353.94001
[5] See https://coronavirus.jhu.edu/map.html for the numbers of COVID-19 cases accessed 30 July 2020.
[6] , “Considerations for quarantine of individuals in the context of containment for coronavirus disease (COVID-19),” Interim guidance, World Health Organization, 19 March 2020.
[7] Daunizeau, J., Moran, R., Brochard, J., Mattout, J., Frackowiak, R., and Friston, K., “Modelling lockdown-induced 2nd COVID waves in France” medRxiv (2020).
[8] Eguíluz, V. M., Fernández-Gracia, J., Rodríguez, J. P., Pericàs, J. M., and Melián, C., “Risk of secondary infection waves of COVID-19 in an insular region: The case of the Balearic Islands, Spain,” medRxiv (2020).
[9] Kissler, S. M.; Tedijanto, C.; Glodstein, E.; Grad, Y. H.; Lipsitch, M., Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period, Science, 368, 860-868 (2020) · doi:10.1126/science.abb5793
[10] Leung, K.; Wu, J. T.; Liu, D.; Leung, G. M., First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: A modelling impact assessment, Lancet, 395, 1382-1393 (2020) · doi:10.1016/S0140-6736(20)30746-7
[11] Ferretti, L.; Wymant, C.; Kendall, M.; Zhao, L.; Nurtay, A.; Abeler-Dörner, L.; Parker, M.; Bonsall, D.; Fraser, C., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science, 368, 619 (2020) · doi:10.1126/science.abb6936
[12] Martcheva, M., An Introduction to Mathematical Epidemiology (2015), Springer: Springer, New York · Zbl 1333.92006
[13] Chowell, G.; Sattenspiel, L.; Bansal, S.; Viboud, C., Mathematical models to characterize early epidemic growth: A review, Phys. Life Rev., 18, 66-97 (2016) · doi:10.1016/j.plrev.2016.07.005
[14] Small, M.; Cavanagh, D.
[15] Adam, D., The limits of R, Nature, 583, 346-348 (2020) · doi:10.1038/d41586-020-02009-w
[16] Faranda, D.; Castillo, I. P.; Hulme, O.; Jezequel, A.; Lamb, J. S. W.; Sato, Y.; Thompson, E. L., Asymptotic estimates of SARS-CoV-2 infection counts and their sensitivity to stochastic perturbation, Chaos, 30, 051107 (2020) · doi:10.1063/5.0008834
[17] Shirley, M. D. F.; Rushton, S. P., The impacts of network topology on disease spread, Ecol. Complex., 2, 287-299 (2005) · doi:10.1016/j.ecocom.2005.04.005
[18] Ganesh, A., Massoulié, L., and Towsley, D., “The effect of network topology on the spread of epidemics,” in Proceedings of IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE, 2005).
[19] Holme, P.; Saramäki, J., Temporal networks, Phys. Rep., 519, 97-125 (2012) · doi:10.1016/j.physrep.2012.03.001
[20] Masuda, N.; Klemm, K.; Eguíluz, V. M., Temporal networks: Slowing down diffusion by long lasting interactions, Phys. Rev. Lett., 111, 188701 (2013) · doi:10.1103/PhysRevLett.111.188701
[21] Masuda, N.; Holme, P., Predicting and controlling infectious disease epidemics using temporal networks, F1000Prime Rep., 5, 6 (2013) · doi:10.12703/P5-6
[22] Cattuto, C.; Van den Broeck, W.; Barrat, A.; Colizza, V.; Pinton, J.-F.; Vespignani, A., Dynamics of person-to-person interactions from distributed RFID sensor networks, PLoS One, 5, e11596 (2010) · doi:10.1371/journal.pone.0011596
[23] Isella, L.; Stehlé, J.; Barrat, A.; Cattuto, C.; Pinton, J.-F.; Van den Broeck, W., What’s in a crowd? Analysis of face-to-face behavioral networks, J. Theor. Biol., 271, 166-180 (2011) · Zbl 1405.92255 · doi:10.1016/j.jtbi.2010.11.033
[24] Salathé, M.; Kazandjieva, M.; Lee, J. W.; Levis, P.; Feldman, M. W.; Jones, J. H., A high-resolution human contact network for infectious disease transmission, Proc. Natl. Acad. Sci. U.S.A., 107, 22020-22025 (2010) · doi:10.1073/pnas.1009094108
[25] Stopczynski, A.; Sekara, V.; Sapiezynski, P.; Cuttone, A.; Madsen, M. M.; Larsen, J. E.; Lehmann, S., Measuring large-scale social networks with high resolution, PLoS One, 9, e95978 (2014) · doi:10.1371/journal.pone.0095978
[26] Holme, P., Temporal network structures controlling disease spreading, Phys. Rev. E, 94, 022305 (2016) · doi:10.1103/PhysRevE.94.022305
[27] Scholtes, I.; Wider, N.; Pfitzner, R.; Garas, A.; Tessone, C. J.; Schweitzer, F., Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks, Nat. Commun., 5, 5024 (2014) · doi:10.1038/ncomms6024
[28] Rodríguez, J. P.; Ghanbarnejad, F.; Eguíluz, V. M., Risk of coinfection outbreaks in temporal networks: A case study of a hospital contact network, Front. Phys., 5, 46 (2017) · doi:10.3389/fphy.2017.00046
[29] Leslie, P. H., On the use of matrices in certain population mathematics, Biometrika, 33, 183-212 (1945) · Zbl 0060.31803 · doi:10.1093/biomet/33.3.183
[30] Gani, J. and Stals, L., see https://openresearch-repository.anu.edu.au/bitstream/1885/73112/9/01_Gani_A_Leslie_Matrix_2013.pdf for “A Leslie matrix approach to an age-structured epidemic” (last accessed May 2, 2020). · Zbl 1326.92066
[31] Edmunds, D. R.; Kauffman, M. J.; Schumaker, B. A.; Lindzey, F. G.; Cook, W. E.; Kreeger, T. J.; Grogan, R. G.; Cornish, T. E., Chronic wasting disease drives population decline of white-tailed deer, PLoS One, 11, e0161127 (2016) · doi:10.1371/journal.pone.0161127
[32] Nishiura, H.; Linton, N. M.; Akhmetzhanov, A. R., Serial interval of novel coronavirus (COVID-19) infections, Int. J. Infect. Dis., 93, 284-286 (2020) · doi:10.1016/j.ijid.2020.02.060
[33] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[34] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442 (1998) · Zbl 1368.05139 · doi:10.1038/30918
[35] Karsai, M.; Kivelä, M.; Pan, R. K.; Kaski, K.; Kertész, J.; Barabási, A.-L.; Saramäki, J., Small but slow world: How network topology and burstiness slow down spreading, Phys. Rev. E, 83, 025102 (2011) · doi:10.1103/PhysRevE.83.025102
[36] Huang, D.-W.; Yu, Z.-G., Dynamic-sensitive centrality of nodes in temporal networks, Sci. Rep., 7, 41454 (2017) · doi:10.1038/srep41454
[37] Thurner, S.; Hanel, R.; Klimek, P., Introduction to the Theory of Complex Systems (2018), Oxford University Press: Oxford University Press, Oxford · Zbl 1400.37001
[38] Prem, K.; Cook, A. R.; Jit, M., Projecting social contact matrices in 152 countries using contact surveys and demographic data, PLoS Comput. Biol., 13, e1005697 (2017) · doi:10.1371/journal.pcbi.1005697
[39] , see https://population.un.org/wpp/DataQuery/ for World Population Prospects 2019; accessed 17 July 2020.
[40] Vanhems, P.; Barrat, A.; Cattuoto, C.; Pinton, J.-F.; Khanafer, N.; Régis, C.; Kim, B.-A.; Comte, B.; Voirin, N., Estimating potential infection transmission routes in hospital wards using wearable proximity sensors, PLoS One, 8, e73970 (2013) · doi:10.1371/journal.pone.0073970
[41] Speidel, L.; Klemm, K.; Eguíluz, V. M.; Masuda, N., Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model, New J. Phys., 18, 073013 (2016) · Zbl 1456.92144 · doi:10.1088/1367-2630/18/7/073013
[42] Poastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Verspignani, A., Epidemic processes in complex networks, Rev. Mod. Phys., 87, 925-979 (2015) · doi:10.1103/RevModPhys.87.925
[43] Surano, F. V.; Bongiorno, C.; Zino, L.; Porfini, M.; Rizzo, A., Backbone reconstruction in temporal networks from epidemic data, Phys. Rev. E, 100, 042306 (2019) · doi:10.1103/PhysRevE.100.042306
[44] Bodych, M.; Ganguly, N.; Krueger, T.; Mukherjee, A.; Siegmung-Shultze, R., Threshold-based epidemic dynamics in systems with memory, Europhys. Lett., 116, 48004 (2016) · doi:10.1209/0295-5075/116/48004
[45] Tizzani, M., Dynamical processes and memory effects on temporal networks
[46] Hiraoka, T.; Jo, H.-H., Correlated bursts in temporal networks slow down spreading, Sci. Rep., 8, 15321 (2018) · doi:10.1038/s41598-018-33700-8
[47] Saito, M., Gyoretsu No Kaisekigaku (Calculus of Matrices) (Tokyo Tosho, Tokyo, 2017) (in Japanese).
[48] Strang, G., Linear Algebra and Its Applications (2006), Thomson Brooks: Thomson Brooks, Belmont, CA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.