×

Temporal link prediction methods based on behavioral synchrony. (English) Zbl 1540.90041

Holme, Petter (ed.) et al., Temporal network theory. Cham: Springer. Comput. Soc. Sci., 381-402 (2023).
Summary: Link prediction – to identify potential missing or spurious links in temporal network data – has typically been based on local structures, ignoring long-term temporal effects. In this chapter, we propose link-prediction methods based on agents’ behavioral synchrony. Since synchronous behavior signals similarity and similar agents are known to have a tendency to connect in the future, behavioral synchrony could function as a precursor of contacts and, thus, as a basis for link prediction. We use four data sets of different sizes to test the algorithm’s accuracy. We compare the results with traditional link prediction models involving both static and temporal networks. Among our findings, we note that the proposed algorithm is superior to conventional methods, with the average accuracy improved by approximately 2-5%. We identify different evolution patterns of four network topologies – a proximity network, a communication network, transportation data, and a collaboration network. We found that: (1) timescale similarity contributes more to the evolution of the human contact network and the human communication network; (2) such contribution is not observed through a transportation network whose evolution pattern is more dependent on network structure than on the behavior of regional agents; (3) both timescale similarity and local structural similarity contribute to the collaboration network.
For the entire collection see [Zbl 1531.90014].

MSC:

90B10 Deterministic network models in operations research
Full Text: DOI

References:

[1] Adamic, LA; Adar, E., Friends and neighbors on the web, Soc. Netw., 25, 3, 211-230, 2003 · doi:10.1016/S0378-8733(03)00009-1
[2] A. Ahmed, E.P. Xing, Recovering time-varying networks of dependencies in social and biological studies. Proc. Natl. Acad. Sci. USA 106(29), 11878-11883 (2009)
[3] Barabási, AL; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512, 1999 · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[4] Bütün, E.; Kaya, M.; Alhajj, R., Extension of neighbor-based link prediction methods for directed, weighted and temporal social networks, Inf. Sci., 463, 152-165, 2018 · doi:10.1016/j.ins.2018.06.051
[5] Chakrabarti, P.; Jawed, MS; Sarkhel, M., Covid-19 pandemic and global financial market interlinkages: a dynamic temporal network analysis, Appl. Econ., 53, 25, 2930-2945, 2021 · doi:10.1080/00036846.2020.1870654
[6] P.R. da Silva Soares, P.B.C. Prudêncio, Time series based link prediction, in The 2012 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2012), pp. 1-7
[7] Dong, P.; Dai, X.; Wyer, RS Jr, Actors conform, observers react: the effects of behavioral synchrony on conformity, J. Pers. Soc. Psychol., 108, 1, 60, 2015 · doi:10.1037/pspi0000001
[8] Dunlavy, DM; Kolda, TG; Acar, E., Temporal link prediction using matrix and tensor factorizations, ACM Trans. Knowl. Discov. Data (TKDD), 5, 2, 1-27, 2011 · doi:10.1145/1921632.1921636
[9] M. Garrod, N.S. Jones, Influencing dynamics on social networks without knowledge of network microstructure. J. R. Soc. Interface 18(181), 20210,435 (2021)
[10] R. Guimerà, M. Sales-Pardo, Missing and spurious interactions and the reconstruction of complex networks. Proc. Natl. Acad. Sci. USA 106(52), 22073-22078 (2009)
[11] İ Güneş, Ş Gündüz-Öğüdücü, Z. Çataltepe, Link prediction using time series of neighborhood-based node similarity scores. Data. Min. Knowl. Discov. 30, 147-180 (2016) · Zbl 1411.62268
[12] X. He, A. Ghasemian, E. Lee, A. Clauset, P. Mucha, Sequential stacking link prediction algorithms for temporal networks (2023). Preprint available at Research Square
[13] Huang, Z.; Lin, DK, The time-series link prediction problem with applications in communication surveillance, INFORMS J. Comput., 21, 2, 286-303, 2009 · doi:10.1287/ijoc.1080.0292
[14] Isella, L.; Stehlé, J.; Barrat, A.; Cattuto, C.; Pinton, JF; Van den Broeck, W., What’s in a crowd? Analysis of face-to-face behavioral networks, J. Theor. Biol., 271, 1, 166-180, 2011 · Zbl 1405.92255 · doi:10.1016/j.jtbi.2010.11.033
[15] P. Jaccard, Étude comparative de la distribution florale dans une portion des alpes et des jura. Bull. de la Soc. Vaud. des Sci. Nat. 37, 547-579 (1901)
[16] K. Lei, M. Qin, B. Bai, G. Zhang, M. Yang, Gcn-gan: a non-linear temporal link prediction model for weighted dynamic networks, in IEEE INFOCOM 2019-IEEE Conference on Computer Communications (IEEE, 2019), pp. 388-396
[17] Y. Li, Y. Wen, P. Nie, X. Yuan, Temporal link prediction using cluster and temporal information based motif feature, in 2018 International Joint Conference on Neural Networks (IJCNN) (2018), pp. 1-8 10.1109/IJCNN.2018.8489644
[18] Li, A.; Zhou, L.; Su, Q.; Cornelius, SP; Liu, YY; Wang, L.; Levin, SA, Evolution of cooperation on temporal networks, Nat. Commun., 11, 1, 2259, 2020 · doi:10.1038/s41467-020-16088-w
[19] Liao, H.; Mariani, MS; Medo, M.; Zhang, YC; Zhou, MY, Ranking in evolving complex networks, Phys. Rep., 689, 1-54, 2017 · Zbl 1366.91124 · doi:10.1016/j.physrep.2017.05.001
[20] D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks, in Proceedings of the Twelfth International Conference on Information and Knowledge Management (2003), pp. 556-559
[21] L. Lü, T. Zhou, Link prediction in complex networks: a survey. Phys. A: Stat. Mech. 390(6), 1150-1170 (2011)
[22] X. Ma, P. Sun, G. Qin, Nonnegative matrix factorization algorithms for link prediction in temporal networks using graph communicability. Pattern Recognit. 71, 361-374 (2017)
[23] X. Ma, P. Sun, Y. Wang, Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks. Phys. A: Stat. Mech. 496, 121-136 (2018) · Zbl 1514.91151
[24] M. McPherson, L. Smith-Lovin, J.M. Cook, Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415-444 (2001)
[25] M. Medo, G. Cimini, S. Gualdi, Temporal effects in the growth of networks. Phys. Rev. Lett. 107(23), 238,701 (2011)
[26] Y. Meng, P. Wang, J. Xiao, X. Zhou, Nelstm: a new model for temporal link prediction in social networks, in 2019 IEEE 13th International Conference on Semantic Computing (ICSC) (IEEE, 2019), pp. 183-186
[27] A.K. Menon, C. Elkan, Link prediction via matrix factorization, in Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings, Part II 22 (Springer, 2011), pp. 437-452
[28] N. Meshcheryakova, Similarity analysis in multilayer temporal food trade network, in Complex Networks XI: Proceedings of the 11th Conference on Complex Networks CompleNet 2020 (Springer, 2020), pp. 322-333
[29] I. Morer, A. Cardillo, A. Díaz-Guilera, L. Prignano, S. Lozano, Comparing spatial networks: a one-size-fits-all efficiency-driven approach. Phys. Rev. E 101, 042,301 (2020)
[30] M.E. Newman, Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025,102 (2001)
[31] V. Ouzienko, Y. Guo, Z. Obradovic, Prediction of attributes and links in temporal social networks, in ECAI 2010 (IOS Press, 2010), pp. 1121-1122
[32] A. Paranjape, A.R. Benson, J. Leskovec, Motifs in temporal networks, in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (ACM, 2017), pp. 601-610
[33] M.H. Riad, M. Sekamatte, F. Ocom, I. Makumbi, C.M. Scoglio, Risk assessment of ebola virus disease spreading in uganda using a two-layer temporal network. Sci. Rep. 9(1), 16,060 (2019)
[34] Taylor, D.; Myers, SA; Clauset, A.; Porter, MA; Mucha, PJ, Eigenvector-based centrality measures for temporal networks, Multiscale Model. Simul., 15, 1, 537-574, 2017 · Zbl 1386.91116 · doi:10.1137/16M1066142
[35] Wiltermuth, SS; Heath, C., Synchrony and cooperation, Psychol. Sci., 20, 1, 1-5, 2009 · doi:10.1111/j.1467-9280.2008.02253.x
[36] Wu, T.; Chang, CS; Liao, W., Tracking network evolution and their applications in structural network analysis, IEEE Trans. Netw. Sci. Eng., 6, 3, 562-575, 2018 · doi:10.1109/TNSE.2018.2815686
[37] Y. Xiang, Y. Xiong, Y. Zhu, Ti-gcn: a dynamic network embedding method with time interval information, in 2020 IEEE International Conference on Big Data (Big Data) (IEEE, 2020), pp. 838-847
[38] Yang, LM; Zhang, W.; Chen, YF, Time-series prediction based on global fuzzy measure in social networks, Front. Inf. Technol. Electron. Eng., 16, 10, 805-816, 2015 · doi:10.1631/FITEE.1500025
[39] Yang, M.; Liu, J.; Chen, L.; Zhao, Z.; Chen, X.; Shen, Y., An advanced deep generative framework for temporal link prediction in dynamic networks, IEEE Trans. Cybern., 50, 12, 4946-4957, 2019 · doi:10.1109/TCYB.2019.2920268
[40] Q. Yao, B. Chen, T.S. Evans, K. Christensen, Higher-order temporal network effects through triplet evolution. Sci. Rep. 11(1), 15,419 (2021)
[41] T. Zhang, K. Zhang, X. Li, L. Lv, Q. Sun, Semi-supervised link prediction based on non-negative matrix factorization for temporal networks. Chaos, Solitons Fractals 145, 110,769 (2021)
[42] T. Zhang, K. Zhang, L. Lv, D. Bardou, Graph regularized non-negative matrix factorization for temporal link prediction based on communicability. J. Phys. Soc. Japan 88(7), 074,002 (2019)
[43] T. Zhou, J. Ren, M. Medo, Y.C. Zhang, Bipartite network projection and personal recommendation. Phys. Rev. E 76(4), 046,115 (2007)
[44] Zhou, T.; Lü, L.; Zhang, YC, Predicting missing links via local information, Eur. Phys. J. B, 71, 623-630, 2009 · Zbl 1188.05143 · doi:10.1140/epjb/e2009-00335-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.