×

Measuring social networks in primates: wearable sensors versus direct observations. (English) Zbl 1472.91027

Summary: Network analysis represents a valuable and flexible framework to understand the structure of individual interactions at the population level in animal societies. The versatility of network representations is moreover suited to different types of datasets describing these interactions. However, depending on the data collection method, different pictures of the social bonds between individuals could a priori emerge. Understanding how the data collection method influences the description of the social structure of a group is thus essential to assess the reliability of social studies based on different types of data. This is however rarely feasible, especially for animal groups, where data collection is often challenging. Here, we address this issue by comparing datasets of interactions between primates collected through two different methods: behavioural observations and wearable proximity sensors. We show that, although many directly observed interactions are not detected by the sensors, the global pictures obtained when aggregating the data to build interaction networks turn out to be remarkably similar. Moreover, sensor data yield a reliable social network over short time scales and can be used for long-term studies, showing their important potential for detailed studies of the evolution of animal social groups.

MSC:

91D30 Social networks; opinion dynamics

References:

[1] Hinde RA. 1976 Interactions, relationships and social structure. Man 11, 1-17. (doi:10.2307/2800384) · doi:10.2307/2800384
[2] Croft D, James R, Krause J. 2008 Exploring animal social networks. Princeton, NJ: Princeton University Press.
[3] Wey T, Blumstein DT, Shen W, Jordán F. 2008 Social network analysis of animal behaviour: a promising tool for the study of sociality. Anim. Behav. 75, 333-344. (doi:10.1016/j.anbehav.2007.06.020) · doi:10.1016/j.anbehav.2007.06.020
[4] Hobson EA, Avery ML, Wright TF. 2013 An analytical framework for quantifying and testing patterns of temporal dynamics in social networks. Anim. Behav. 85, 83-96. (doi:10.1016/j.anbehav.2012.10.010) · doi:10.1016/j.anbehav.2012.10.010
[5] Kurvers RHJM, Krause J, Croft DP, Wilson ADM, Wolf M. 2014 The evolutionary and ecological consequences of animal social networks: emerging issues. Trends Ecol. Evol. 29, 326-335. (doi:10.1016/j.tree.2014.04.002) · doi:10.1016/j.tree.2014.04.002
[6] Krause J, James R, Franks D, Croft D. 2015 Animal social networks. Oxford, UK: Oxford University Press.
[7] Whitehead H. 2008 Analyzing animal societies: quantitative methods for vertebrate social analysis. Chicago, IL: University of Chicago Press.
[8] Webber QM, Wal EV. 2019 Trends and perspectives on the use of animal social network analysis in behavioural ecology: a bibliometric approach. Anim. Behav. 149, 77-87. (doi:10.1016/j.anbehav.2019.01.010) · doi:10.1016/j.anbehav.2019.01.010
[9] Wal EV et al. 2009 Life in the network: the coming age of computational social science. Science 323, 721-723. (doi:10.1126/science.1167742) · doi:10.1126/science.1167742
[10] Onnela JP, Saramäki J, Hyvonen J, Szabó G, Argollo de Menezes M, Kaski K, Barabási AL, Kertész J. 2007 Analysis of a large-scale weighted network of one-to-one human communication. New J. Phys. 9, 179-179. (doi:10.1088/1367-2630/9/6/179) · doi:10.1088/1367-2630/9/6/179
[11] Eckmann JP, Moses E, Sergi D. 2004 Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl Acad. Sci. USA 101, 14 333-14 337. (doi:10.1073/pnas.0405728101) · Zbl 1072.37516 · doi:10.1073/pnas.0405728101
[12] Kossinets G, Watts DJ. 2006 Empirical analysis of an evolving social network. Science 311, 88-90. (doi:10.1126/science.1116869) · Zbl 1226.91055 · doi:10.1126/science.1116869
[13] Golder SA, Wilkinson DM, Huberman BA. 2007 Rhythms of social interaction: messaging within a massive online network. In Communities and technologies 2007 (eds C Steinfield, BT Pentland, M Ackerman, N Contractor), pp. 41-66. Berlin, Germany: Springer.
[14] Cattuto C, Van den Broeck W, Barrat A, Colizza V, Pinton JF, Vespignani A. 2010 Dynamics of person-to-person interactions from distributed RFID sensor networks. PLoS ONE 5, e11596. (doi:10.1371/journal.pone.0011596) · doi:10.1371/journal.pone.0011596
[15] Salathé M, Kazandjieva M, Lee JW, Levis P, Feldman MW, Jones JH. 2010 A high-resolution human contact network for infectious disease transmission. Proc. Natl Acad. Sci. USA 107, 22 020-22 025. (doi:10.1073/pnas.1009094108) · doi:10.1073/pnas.1009094108
[16] Isella L, Stehlé J, Barrat A, Cattuto C, Pinton JF, Van den Broeck W. 2011 What’s in a crowd? Analysis of face-to-face behavioural networks. J. Theor. Biol. 271, 166-180. (doi:10.1016/j.jtbi.2010.11.033) · Zbl 1405.92255 · doi:10.1016/j.jtbi.2010.11.033
[17] Stopczynski A, Sekara V, Sapiezynski P, Cuttone A, Madsen MM, Larsen JE, Lehmann S. 2014 Measuring large-scale social networks with high resolution. PLoS ONE 9, e95978. (doi:10.1371/journal.pone.0095978) · doi:10.1371/journal.pone.0095978
[18] Fournet J, Barrat A. 2014 Contact patterns among high school students. PLoS ONE 9, e107878. (doi:10.1371/journal.pone.0107878) · doi:10.1371/journal.pone.0107878
[19] Toth DJ, Leecaster M, Pettey WB, Gundlapalli AV, Gao H, Rainey JJ, Uzicanin A, Samore MH. 2015 The role of heterogeneity in contact timing and duration in network models of influenza spread in schools. J. R. Soc. Interface 12, 20150279. (doi:10.1098/rsif.2015.0279) · doi:10.1098/rsif.2015.0279
[20] Génois M, Vestergaard C, Cattuto C, Barrat A. 2015 Compensating for population sampling in simulations of epidemic spread on temporal contact networks. Nat. Commun. 8, 8860. (doi:10.1038/ncomms9860) · doi:10.1038/ncomms9860
[21] Farine DR, Whitehead H. 2015 Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144-1163. (doi:10.1111/1365-2656.12418) · doi:10.1111/1365-2656.12418
[22] Davis GH, Crofoot MC, Farine DR. 2018 Estimating the robustness and uncertainty of animal social networks using different observational methods. Anim. Behav. 141, 29-44. (doi:10.1016/j.anbehav.2018.04.012) · doi:10.1016/j.anbehav.2018.04.012
[23] Eagle N, Pentland A. 2006 Reality mining: sensing complex social systems. Personal Ubiquitous Comput. 10, 255-268. (doi:10.1007/s00779-005-0046-3) · doi:10.1007/s00779-005-0046-3
[24] Krause J, Krause S, Arlinghaus R, Psorakis I, Roberts S, Rutz C. 2013 Reality mining of animal social systems. Trends Ecol. Evol. 28, 541-551. (doi:10.1016/j.tree.2013.06.002) · doi:10.1016/j.tree.2013.06.002
[25] Hughey LF, Hein AM, Strandburg-Peshkin A, Jensen FH. 2018 Challenges and solutions for studying collective animal behaviour in the wild. Phil. Trans. R. Soc. B 373, 20170005. (doi:10.1098/rstb.2017.0005) · doi:10.1098/rstb.2017.0005
[26] Crall J, Gravish N, Mountcastle A, Combes S. 2015 BEEtag: a low-cost, image-based tracking system for the study of animal behaviour and locomotion. PLoS ONE 10, e0136487. (doi:10.1371/journal.pone.0136487) · doi:10.1371/journal.pone.0136487
[27] Romero-Ferrero F, Bergomi MG, Hinz RC, Heras FJH, de Polavieja GG. 2019 idtracker.ai: tracking all individuals in small or large collectives of unmarked animals. Nat. Methods 16, 179-182. (doi:10.1038/s41592-018-0295-5) · doi:10.1038/s41592-018-0295-5
[28] Mathis A, Mamidanna P, Cury KM, Abe T, Murthy VN, Mathis MW, Bethge M. 2018 DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281-1289. (doi:10.1038/s41593-018-0209-y) · doi:10.1038/s41593-018-0209-y
[29] Graving JM, Chae D, Naik H, Li L, Koger B, Costelloe BR, Couzin ID. 2019 DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning. eLife 8, e47994. (doi:10.7554/eLife.47994) · doi:10.7554/eLife.47994
[30] Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC. 2015 Shared decision-making drives collective movement in wild baboons. Science 348, 1358-1361. (doi:10.1126/science.aaa5099) · doi:10.1126/science.aaa5099
[31] Choudhury T, Pentland A. 2003 Sensing and modeling human networks using the sociometer. In Proc. of the 7th IEEE Int. Symp. on Wearable Computers ISWC ’03, White Plains, NY, 21-23 October 2003. Washington, DC: IEEE Computer Society.
[32] O’Bryan LR, Abaid N, Nakayama S, Dey T, King AJ, Cowlishaw G, Rubenstein DI, Garnier S. 2019 Contact calls facilitate group contraction in free-ranging goats (Capra aegagrus hircus). Front. Ecol. Evol. 7, 73. (doi:10.3389/fevo.2019.00073) · doi:10.3389/fevo.2019.00073
[33] Ryder TB, Horton BM, Morales JDD, Moore IT. 2012 Proximity data-loggers increase the quantity and quality of social network data. Biol. Lett. 8, 917-920. (doi:10.1098/rsbl.2012.0536) · doi:10.1098/rsbl.2012.0536
[34] Rutz C, Burns ZT, James R, Ismar SM, Burt J, Otis B, Bowen J, St Clair JJ. 2012 Automated mapping of social networks in wild birds. Curr. Biol. 22, R669-R671. (doi:10.1016/j.cub.2012.06.037) · doi:10.1016/j.cub.2012.06.037
[35] St Clair JJ, Burns ZT, Bettaney EM, Morrissey MB, Otis B, Ryder TB, Fleischer RC, James R, Rutz C. 2015 Experimental resource pulses influence social-network dynamics and the potential for information flow in tool-using crows. Nat. Commun. 6, 7197. (doi:10.1038/ncomms8197) · doi:10.1038/ncomms8197
[36] Rutz C, Morrissey MB, Burns ZT, Burt J, Otis B, St Clair JJ, James R. 2015 Calibrating animal-borne proximity loggers. Methods Ecol. Evol. 6, 656-667. (doi:10.1111/2041-210X.12370) · doi:10.1111/2041-210X.12370
[37] Bettaney E, James R, St Clair J, Rutz C. 2015 Processing and visualising association data from animal-borne proximity loggers. Anim. Biotelem. 3, 27. (doi:10.1186/s40317-015-0065-4) · doi:10.1186/s40317-015-0065-4
[38] Milwid RM, O’Sullivan TL, Poljak Z, Laskowski M, Greer AL. 2019 Validation of modified radio-frequency identification tag firmware, using an equine population case study. PLoS ONE 14, e0210148. (doi:10.1371/journal.pone.0210148) · doi:10.1371/journal.pone.0210148
[39] Wilson-Aggarwal JK, Ozella L, Tizzoni M, Cattuto C, Swan GJ, Moundai T, Silk MJ, Zingeser JA, McDonald RA. 2019 High-resolution contact networks of free-ranging domestic dogs Canis familiaris and implications for transmission of infection. PLoS Negl. Trop. Dis. 13, e0007565. (doi:10.1371/journal.pntd.0007565) · doi:10.1371/journal.pntd.0007565
[40] Vestergaard CL, Valdano E, Génois M, Poletto C, Colizza V, Barrat A. 2016 Impact of spatially constrained sampling of temporal contact networks on the evaluation of the epidemic risk. Eur. J. Appl. Math. 27, 941-957. (doi:10.1017/S0956792516000309) · Zbl 1375.92072 · doi:10.1017/S0956792516000309
[41] Castles M, Heinsohn R, Marshall HH, Lee AE, Cowlishaw G, Carter AJ. 2014 Social networks created with different techniques are not comparable. Anim. Behav. 96, 59-67. (doi:10.1016/j.anbehav.2014.07.023) · doi:10.1016/j.anbehav.2014.07.023
[42] Farine DR. 2015 Proximity as a proxy for interactions: issues of scale in social network analysis. Anim. Behav. 104, e1-e5. (doi:10.1016/j.anbehav.2014.11.019) · doi:10.1016/j.anbehav.2014.11.019
[43] Smieszek T, Barclay VC, Seeni I, Rainey JJ, Gao H, Uzicanin A, Salathé M. 2014 How should social mixing be measured: comparing web-based survey and sensor-based methods. BMC Infect. Dis. 14, 136. (doi:10.1186/1471-2334-14-136) · doi:10.1186/1471-2334-14-136
[44] Mastrandrea R, Fournet J, Barrat A. 2015 Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS ONE 10, e0136497. (doi:10.1371/journal.pone.0136497) · doi:10.1371/journal.pone.0136497
[45] Smieszek T, Castell S, Barrat A, Cattuto C, White PJ, Krause G. 2016 Contact diaries versus wearable proximity sensors in measuring contact patterns at a conference: method comparison and participants’ attitudes. BMC Infect. Dis. 16, 341. (doi:10.1186/s12879-016-1676-y) · doi:10.1186/s12879-016-1676-y
[46] Lucet JC et al. 2012 Electronic sensors for assessing interactions between healthcare workers and patients under airborne precautions. PLoS ONE 7, e37893. (doi:10.1371/journal.pone.0037893) · doi:10.1371/journal.pone.0037893
[47] Elmer T, Chaitanya K, Purwar P, Stadtfeld C. 2019 The validity of RFID badges measuring face-to-face interactions. Behav. Res. Methods 51, 2120-2138. (doi:10.3758/s13428-018-1180-y) · doi:10.3758/s13428-018-1180-y
[48] Claidière N, Gullstrand J, Latouche A, Fagot J. 2017 Using automated learning devices for monkeys (ALDM) to study social networks. Behav. Res. Methods 49, 24-34. (doi:10.3758/s13428-015-0686-9) · doi:10.3758/s13428-015-0686-9
[49] Gelardi V, Fagot J, Barrat A, Claidière N. 2019 Detecting social (in)stability in primates from their temporal co-presence network. Anim. Behav. 157, 239-254. (doi:10.1016/j.anbehav.2019.09.011) · doi:10.1016/j.anbehav.2019.09.011
[50] Altmann J. 1974 Observational study of behaviour: sampling methods. Behaviour 49, 227-266. (doi:10.1163/156853974X00534) · doi:10.1163/156853974X00534
[51] Stehlé J et al. 2011 High-resolution measurements of face-to-face contact patterns in a primary school. PLoS ONE 6, e23176. (doi:10.1371/journal.pone.0023176) · doi:10.1371/journal.pone.0023176
[52] Seyfarth RM. 1977 A model of social grooming among adult female monkeys. J. Theor. Biol. 65, 671-698. (doi:10.1016/0022-5193(77)90015-7) · doi:10.1016/0022-5193(77)90015-7
[53] Bastian M, Heymann S, Jacomy M. 2009 Gephi: an open source software for exploring and manipulating networks. In Proc. Third Int. AAAI Conf. on Weblogs and Social Media, San Jose, CA, 17-20 May 2009. Palo Alto, CA: AAAI Press.
[54] Farine D. 2018 When to choose dynamic vs. static social network analysis. J. Anim. Ecol. 87, 128-138. (doi:10.1111/1365-2656.12764) · doi:10.1111/1365-2656.12764
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.