×

Non-systemic transmission of tick-borne diseases: a network approach. (English) Zbl 1510.92206

Summary: Tick-borne diseases can be transmitted via non-systemic (NS) transmission. This occurs when tick gets the infection by co-feeding with infected ticks on the same host resulting in a direct pathogen transmission between the vectors, without infecting the host. This transmission is peculiar, as it does not require any systemic infection of the host. The NS transmission is the main efficient transmission for the persistence of the tick-borne encephalitis virus in nature. By describing the heterogeneous ticks aggregation on hosts through a bipartite graphs representation, we are able to mathematically define the NS transmission and to depict the epidemiological conditions for the pathogen persistence. Despite the fact that the underlying network is largely fragmented, analytical and computational results show that the larger is the variability of the aggregation, and the easier is for the pathogen to persist in the population.

MSC:

92D30 Epidemiology
92D25 Population dynamics (general)

References:

[1] Bernoulli, D.; Blower, S., An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it, Rev Med Virol, 14, 5, 275-288 (2004)
[2] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc R Soc Lond Ser A, 115, 772, 700-721 (1927) · JFM 53.0517.01
[3] Wolfram, S., A new kind of science (2002), Wolfram Media · Zbl 1022.68084
[4] Chowell, G.; Hyman, J. M.; Eubank, S.; Castillo-Chavez, C., Scaling laws for the movement of people between locations in a large city, Phys Rev E, 68, 066102 (2003)
[5] Eubank, S.; Guclu, H.; Kumar, V. S.A.; Marathe, M. V.; Srinivasan, A.; Toroczkai, Z., Modelling disease outbreaks in realistic urban social networks, Nature, 429, 180-184 (2004)
[6] Becker, N.; Marschner, I., The effect of heterogeneity on the spread of disease, (Gabriel, J.-P.; Lefvre, C.; Picard, P., Stochastic processes in epidemic theory. Stochastic processes in epidemic theory, Lecture notes in biomathematics, 86 (1990), Springer: Springer Heidelberg), 90-103 · Zbl 0719.92019
[7] Ball, F.; Mollison, D.; Scalia-Tomba, G., Epidemics with two levels of mixing, Ann Appl Prob, 7, 1, 46-89 (1997) · Zbl 0909.92028
[8] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys Rev Lett, 86, 3200-3203 (2001)
[9] Newman, M. E.J., Spread of epidemic disease on networks, Phys Rev E, 66, 016128 (2002)
[10] May, R. M.; Lloyd, A. L., Infection dynamics on scale-free networks, Phys Rev E, 64, 066112 (2001)
[11] Martin, J.; Yeung, K.-T., Persistence of close personal ties over a 12-year period, Soc Netw, 28, 4, 331-362 (2006)
[12] Apicella, C.; Marlowe, F.; Fowler, J.; Christakis, N., Social networks and cooperation in hunter-gatherers, Nature, 481, 7382, 497-501 (2012)
[13] Miritello, G.; Lara, R.; Cebrian, M.; Moro, E., Limited communication capacity unveils strategies for human interaction, Scic Rep, 3, 1-7 (1950), Article Id. 1950
[14] Jeong, H.; Mason, S. P.; Barabasi, A.-L.; Oltvai, Z. N., Lethality and centrality in protein networks, Nature, 411, 41-42 (2001)
[15] Dunne, J.b.; Williams, R.; Martinez, N., Network structure and biodiversity loss in food webs: Robustness increases with connectance, Ecol Lett, 5, 4, 558-567 (2002)
[16] Dunne, J.b.; Williams, R.; Martinez, N., Food-web structure and network theory: The role of connectance and size, Proc Natl Acad Sci USA, 99, 20, 12917-12922 (2002)
[17] Giot, L.; Bader, J. S.; Brouwer, C.; Chaudhuri, A.; Kuang, B.; Li, Y., A protein interaction map of drosophila melanogaster, Science, 302, 5651, 1727-1736 (2003)
[18] Bascompte, J.; Jordano, P.; Melin, C.; Olesen, J., The nested assembly of plant-animal mutualistic networks, Proc Natl Acad Sci USA, 100, 16, 9383-9387 (2003)
[19] Caretta-Cartozo, C.; De Los Rios, P.; Piazza, F.; Li, P., Bottleneck genes and community structure in the cell cycle network of S. pombe, PLoS Comput Biol, 3, 6, e103 (2007)
[20] Mersch, D. P.; Crespi, A.; Keller, L., Tracking individuals shows spatial fidelity is a key regulator of ant social organization, Science, 340, 6136, 1090-1093 (2013)
[21] Häuser, R.; Ceol, A.; Rajagopala, S. V.; Mosca, R.; Siszler, G.; Wermke, N., A second-generation protein-protein interaction network of Helicobacter pylori, Mol Cell Proteom, 13, 5, 1318-1329 (2014)
[22] Latora, V.; Marchiori, M., Is the boston subway a small-world network?, Phys A Stat Mech Appl, 314, 1-4, 109-113 (2002) · Zbl 1001.90011
[23] Sen, P.; Dasgupta, S.; Chatterjee, A.; Sreeram, P. A.; Mukherjee, G.; Manna, S. S., Small-world properties of the Indian railway network, Phys Rev E, 67, 3, 036106 (2003)
[24] Pastor-Satorras, R.; Vespignani, A., Evolution and structure of the internet (2004), Cambridge University Press
[25] Barrat, A.; Barthlemy, M.; Pastor-Satorras, R.; Vespignani, A., The architecture of complex weighted networks, Proc Natl Acad Sci USA, 101, 11, 3747-3752 (2004)
[26] Kalapala, V.; Sanwalani, V.; Clauset, A.; Moore, C.b., Scale invariance in road networks, Phys Rev E Stat Nonlinear Soft Matter Phys, 73, 2, 1-6 (2006), Article Id. 026130
[27] Wasserman, S.; Faust, K., Social network analysis (1994), Cambridge University Press: Cambridge University Press Cambridge, UK
[28] Scott, J., Social network analysis (2013), Sage Publications: Sage Publications Oxford, UK
[29] Newman, M. E.J., Networks: An introduction (2010), Oxford University Press · Zbl 1195.94003
[30] Barrat, A.; Barthélemy, M.; Vespignani, A., Dynamical processes on complex networks (2008), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1198.90005
[31] Caldarelli, G., Scale-free networks (2007), Oxford University Press · Zbl 1119.94001
[32] Isella, L.; Stehlé, J.; Barrat, A.; Cattuto, C.; Pinton, J.-F.; Broeck, W. V.d., What’s in a crowd? Analysis of face-to-face behavioral networks, J Theor Biol, 271, 1, 166-180 (2011) · Zbl 1405.92255
[33] Miritello, G.; Moro, E.; Lara, R., Dynamical strength of social ties in information spreading, Phys Rev E, 83, 4, 045102 (2011)
[34] Karsai, M.; Kivelä, M.; Pan, R. K.; Kaski, K.; Kertész, J.; Barabási, A.-L., Small but slow world: How network topology and burstiness slow down spreading, Phys Rev E, 83, 2, 025102 (2011)
[35] Rocha, L. E.C.; Blondel, V. D., Bursts of vertex activation and epidemics in evolving networks, PLoS Comput Biol, 9, 3, e1002974 (2013)
[36] Ferreri, L.; Bajardi, P.; Giacobini, M.; Perazzo, S.; Venturino, E., Interplay of network dynamics and heterogeneity of ties on spreading dynamics, Phys Rev E, 90, 012812 (2014)
[37] Iribarren, J. L.; Moro, E., Impact of human activity patterns on the dynamics of information diffusion, Phys Rev Lett, 103, 038702 (2009)
[38] Vazquez, A.; Rácz, B.; Lukács, A.; Barabási, A.-L., Impact of non-poissonian activity patterns on spreading processes, Phys Rev Lett, 98, 158702 (2007)
[39] Eames, K. T.; Keeling, M. J., Monogamous networks and the spread of sexually transmitted diseases, Math Biosci, 189, 2, 115-130 (2004) · Zbl 1048.92028
[40] Perra, N.; Gonçalves, B.; Pastor-Satorras, R.; Vespignani, A., Activity driven modeling of time varying networks, Sci Rep, 2, 469 (2012)
[41] Liu, S.; Perra, N.; Karsai, M.; Vespignani, A., Controlling contagion processes in activity driven networks, Phys Rev Lett, 112, 118702 (2014)
[42] Volz, E.; Meyers, L. A., Epidemic thresholds in dynamic contact networks, J R Soc Interface, 6, 32, 233-241 (2009)
[43] Gross, T.; D’Lima, C. J.D.; Blasius, B., Epidemic dynamics on an adaptive network, Phys Rev Lett, 96, 208701 (2006)
[44] Taylor, M.; Taylor, T. J.; Kiss, I. Z., Epidemic threshold and control in a dynamic network, Phys Rev E, 85, 016103 (2012)
[45] Valdano, E.; Ferreri, L.; Poletto, C.; Colizza, V., Analytical computation of the epidemic threshold on temporal networks, Phys Rev X, 5, 2, 021005 (2015)
[46] Gern, L.; Humair, P.-F., Natural history of borrelia burgdorferi sensu lato, Wien Klin Wochenschr, 110, 24, 856-858 (1998)
[47] Mannelli, A.; Bertolotti, L.; Gern, L.; Gray, J., Ecology of Borrelia burgdorferi sensu lato in Europe: Transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change, FEMS Microbiol Rev, 36, 4, 837-861 (2012)
[48] Randolph, S.; Sumilo, D., Tick-borne encephalitis in Europe: dynamics of changing risk, (Takken, W.; Knols, B., Emerging pests and vector-borne diseases in Europe (2007), Wageningen Academic), 187-206
[49] Mantke, O. D.; Schädler, R.; Niedrig, M., A survey on cases of tick-borne encephalitis in European countries., Euro Surveill Bull Euroeng sur les Mal Transm [Eur Commun Dis Bull], 13, 17, 1-9 (2008), Article Id. 5
[50] Lindquist, L.; Vapalahti, O., Tick-borne encephalitis, Lancet, 371, 9627, 1861-1871 (2008)
[51] Mansfield, K. L.; Johnson, N.; Phipps, L. P.; Stephenson, J. R.; Fooks, A. R.; Solomon, T., Tick-borne encephalitis virus a review of an emerging zoonosis, J Gen Virol, 90, 8, 1781-1794 (2009)
[52] Nuttall, P.; Labuda, M., Dynamics of infection in tick vectors and at the tick-host interface, Adv Virus Res, 60, 233-272 (2003)
[53] Randolph, S.; Gern, L.; Nuttall, P., Co-feeding ticks: Epidemiological significance for tick-borne pathogen transmission, Parasitol Today, 12, 12, 472-479 (1996)
[54] Rosà, R.; Pugliese, A.; Norman, R.; Hudson, P., Thresholds for disease persistence in models for tick-borne infections including non-viraemic transmission, extended feeding and tick aggregation, J Theor Biol, 224, 3, 359-376 (2003) · Zbl 1465.92128
[55] Hartemink, N.; Randolph, S.; Davis, S.; Heesterbeek, J., The basic reproduction number for complex disease systems: Defining \(R_0\) for tick-borne infections, Am Nat, 171, 6, 743-754 (2008)
[56] Harrison, A.; Bennett, N., The importance of the aggregation of ticks on small mammal hosts for the establishment and persistence of tick-borne pathogens: An investigation using the \(R_0\) model, Parasitology, 139, 12, 1605-1613 (2012)
[57] Randolph, S. E., Patterns of distribution of the tick Ixodes trianguliceps birula on its hosts, J Anim Ecol, 44, 2, 451-474 (1975)
[58] Shaw, D.; Dobson, A., Patterns of macroparasite abundance and aggregation in wildlife populations: A quantitative review, Parasitology, 111, S111-S133 (1995)
[59] Shaw, D.; Grenfell, B.; Dobson, A., Patterns of macroparasite aggregation in wildlife host populations, Parasitology, 117, 6, 597-608 (1998)
[60] Brunner, J.; Ostfeld, R., Multiple causes of variable tick burdens on small-mammal hosts, Ecology, 89, 8, 2259-2272 (2008)
[61] Bisanzio, D.; Bertolotti, L.; Tomassone, L.; Amore, G.; Ragagli, C.; Mannelli, A., Modeling the spread of vector-borne diseases on bipartite networks, PLoS ONE, 5, 11, 1-5 (2010), Article Id. 0013796
[62] Kiffner, C.; Vor, T.; Hagedorn, P.; Niedrig, M.; Rhe, F., Factors affecting patterns of tick parasitism on forest rodents in tick-borne encephalitis risk areas, Germany, Parasitol Res, 108, 2, 323-335 (2011)
[63] Ferreri, L.; Giacobini, M.; Bajardi, P.; Bertolotti, L.; Bolzoni, L.; Tagliapietra, V., Pattern of tick aggregation on mice: Larger than expected distribution tail enhances the spread of tick-borne pathogens, PLoS Comput Biol, 10, 11, e1003931 (2014)
[64] Anderson, R.; May, R., Infectious diseases of humans: Dynamics and control (1992), Oxford: Oxford UK
[65] Keeling, M. J.; Rohani, P., Modeling infectious diseases in humans and animals (2008), Princeton University Press · Zbl 1279.92038
[66] Brauer, F.; Castillo-Chavez, C., Mathematical models in population biology and epidemiology (2012), Springer: Springer Heidelberg · Zbl 1302.92001
[67] Gómez, S.; Arenas, A.; Borge-Holthoefer, J.; Meloni, S.; Moreno, Y., Discrete-time Markov chain approach to contact-based disease spreading in complex networks, Europhys Lett, 89, 3, 38009 (2010)
[68] Elaydi, S., An introduction to difference equations (2005), Springer: Springer Heidelberg · Zbl 1071.39001
[69] Granell, C.; Góomez, S.; Arenas, A., Dynamical interplay between awareness and epidemic spreading in multiplex networks, Phys. Rev. Lett., 111, 1-5 (2013), Article Id. 128701
[70] Massaro, E.; Bagnoli, F., Epidemic spreading and risk perception in multiplex networks: A self-organized percolation method, Phys. Rev. E, 90, 1-8 (2014), Article Id. 052817 · Zbl 1409.92248
[71] Valdano, E.; Poletto, C.; Colizza, V., Infection propagator approach to compute epidemic thresholds on temporal networks: impact of immunity and of limited temporal resolution, Eur. Phys. J. B, 88, 1-11 (2015), Article Id. 341
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.