×

Oscillation suppression and chimera states in time-varying networks. (English) Zbl 07871086


MSC:

34Cxx Qualitative theory for ordinary differential equations
34Dxx Stability theory for ordinary differential equations
37Nxx Applications of dynamical systems
Full Text: DOI

References:

[1] Ghosh, D.; Frasca, M.; Rizzo, A.; Majhi, S.; Rakshit, S.; Alfaro-Bittner, K.; Boccaletti, S., The synchronized dynamics of time-varying networks, Phys. Rep., 949, 1-63, 2022 · Zbl 1503.93025 · doi:10.1016/j.physrep.2021.10.006
[2] Newman, M., Networks, 2018, Oxford University Press · Zbl 1391.94006
[3] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47, 2002 · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[4] Newman, M. E.; Barabási, A.-L. E.; Watts, D. J., The Structure and Dynamics of Networks, 2006, Princeton University Press · Zbl 1362.00042
[5] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: Structure and dynamics, Phys. Rep., 424, 175-308, 2006 · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[6] Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C. I.; Gómez-Gardenes, J.; Romance, M.; Sendina-Nadal, I.; Wang, Z.; Zanin, M., The structure and dynamics of multilayer networks, Phys. Rep., 544, 1-122, 2014 · doi:10.1016/j.physrep.2014.07.001
[7] Kivelä, M.; Arenas, A.; Barthelemy, M.; Gleeson, J. P.; Moreno, Y.; Porter, M. A., Multilayer networks, J. Complex Networks, 2, 203-271, 2014 · doi:10.1093/comnet/cnu016
[8] Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.-G.; Petri, G., Networks beyond pairwise interactions: Structure and dynamics, Phys. Rep., 874, 1-92, 2020 · Zbl 1472.05143 · doi:10.1016/j.physrep.2020.05.004
[9] Majhi, S.; Perc, M.; Ghosh, D., Dynamics on higher-order networks: A review, J. R. Soc. Interface, 19, 20220043, 2022 · doi:10.1098/rsif.2022.0043
[10] Holme, P.; Saramäki, J., Temporal networks, Phys. Rep., 519, 97-125, 2012 · doi:10.1016/j.physrep.2012.03.001
[11] Han, J.-D. J.; Bertin, N.; Hao, T.; Goldberg, D. S.; Berriz, G. F.; Zhang, L. V.; Dupuy, D.; Walhout, A. J.; Cusick, M. E.; Roth, F. P., Evidence for dynamically organized modularity in the yeast protein-protein interaction network, Nature, 430, 88-93, 2004 · doi:10.1038/nature02555
[12] Taylor, I. W.; Linding, R.; Warde-Farley, D.; Liu, Y.; Pesquita, C.; Faria, D.; Bull, S.; Pawson, T.; Morris, Q.; Wrana, J. L., Dynamic modularity in protein interaction networks predicts breast cancer outcome, Nat. Biotechnol., 27, 199-204, 2009 · doi:10.1038/nbt.1522
[13] Bullmore, E.; Sporns, O., Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci., 10, 186-198, 2009 · doi:10.1038/nrn2575
[14] Bassett, D. S.; Wymbs, N. F.; Porter, M. A.; Mucha, P. J.; Carlson, J. M.; Grafton, S. T., Dynamic reconfiguration of human brain networks during learning, Proc. Natl. Acad. Sci. U.S.A., 108, 7641-7646, 2011 · doi:10.1073/pnas.1018985108
[15] Cattuto, C.; Van den Broeck, W.; Barrat, A.; Colizza, V.; Pinton, J.-F.; Vespignani, A., Dynamics of person-to-person interactions from distributed RFID sensor networks, PLoS One, 5, e11596, 2010 · doi:10.1371/journal.pone.0011596
[16] Isella, L.; Stehlé, J.; Barrat, A.; Cattuto, C.; Pinton, J.-F.; Van den Broeck, W., What’s in a crowd? Analysis of face-to-face behavioral networks, J. Theor. Biol., 271, 166-180, 2011 · Zbl 1405.92255 · doi:10.1016/j.jtbi.2010.11.033
[17] Yoshida, T.; Jones, L. E.; Ellner, S. P.; Fussmann, G. F.; Hairston, N. G., Rapid evolution drives ecological dynamics in a predator-prey system, Nature, 424, 303-306, 2003 · doi:10.1038/nature01767
[18] Ulanowicz, R. E., Quantitative methods for ecological network analysis, Comput. Biol. Chem., 28, 321-339, 2004 · Zbl 1088.92061 · doi:10.1016/j.compbiolchem.2004.09.001
[19] Onnela, J.-P.; Saramäki, J.; Hyvönen, J.; Szabó, G.; Lazer, D.; Kaski, K.; Kertész, J.; Barabási, A.-L., Structure and tie strengths in mobile communication networks, Proc. Natl. Acad. Sci. U.S.A., 104, 7332-7336, 2007 · doi:10.1073/pnas.0610245104
[20] Wu, Y.; Zhou, C.; Xiao, J.; Kurths, J.; Schellnhuber, H. J., Evidence for a bimodal distribution in human communication, Proc. Natl. Acad. Sci. U.S.A., 107, 18803-18808, 2010 · doi:10.1073/pnas.1013140107
[21] Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C., The synchronization of chaotic systems, Phys. Rep., 366, 1-101, 2002 · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[22] Pikovsky, A.; Kurths, J.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, 2003, Cambridge University Press · Zbl 1219.37002
[23] Belykh, I. V.; Belykh, V. N.; Hasler, M., Blinking model and synchronization in small-world networks with a time-varying coupling, Physica D, 195, 188-206, 2004 · Zbl 1098.82621 · doi:10.1016/j.physd.2004.03.013
[24] Frasca, M.; Buscarino, A.; Rizzo, A.; Fortuna, L.; Boccaletti, S., Synchronization of moving chaotic agents, Phys. Rev. Lett., 100, 044102, 2008 · doi:10.1103/PhysRevLett.100.044102
[25] Rakshit, S.; Majhi, S.; Bera, B. K.; Sinha, S.; Ghosh, D., Time-varying multiplex network: Intralayer and interlayer synchronization, Phys. Rev. E, 96, 062308, 2017 · doi:10.1103/PhysRevE.96.062308
[26] Kohar, V.; Ji, P.; Choudhary, A.; Sinha, S.; Kurths, J., Synchronization in time-varying networks, Phys. Rev. E, 90, 022812, 2014 · doi:10.1103/PhysRevE.90.022812
[27] Majhi, S.; Ghosh, D.; Kurths, J., Emergence of synchronization in multiplex networks of mobile Rössler oscillators, Phys. Rev. E, 99, 012308, 2019 · doi:10.1103/PhysRevE.99.012308
[28] Del Genio, C. I.; Romance, M.; Criado, R.; Boccaletti, S., Synchronization in dynamical networks with unconstrained structure switching, Phys. Rev. E, 92, 062819, 2015 · doi:10.1103/PhysRevE.92.062819
[29] Majhi, S.; Ghosh, D., Synchronization of moving oscillators in three dimensional space, Chaos, 27, 053115, 2017 · Zbl 1390.90138 · doi:10.1063/1.4984026
[30] Chowdhury, S. N.; Majhi, S.; Ozer, M.; Ghosh, D.; Perc, M., Synchronization to extreme events in moving agents, New J. Phys., 21, 073048, 2019 · doi:10.1088/1367-2630/ab2a1f
[31] Rakshit, S.; Bera, B. K.; Bollt, E. M.; Ghosh, D., Intralayer synchronization in evolving multiplex hypernetworks: Analytical approach, SIAM J. Appl. Dyn. Syst., 19, 918-963, 2020 · Zbl 1441.37093 · doi:10.1137/18M1224441
[32] Buscarino, A.; Fortuna, L.; Frasca, M.; Gambuzza, L. V.; Nunnari, G., Synchronization of chaotic systems with activity-driven time-varying interactions, J. Complex Networks, 6, 173-186, 2018 · doi:10.1093/comnet/cnx027
[33] Rakshit, S.; Bera, B. K.; Kurths, J.; Ghosh, D., Enhancing synchrony in multiplex network due to rewiring frequency, Proc. R. Soc. A, 475, 20190460, 2019 · Zbl 1473.90040 · doi:10.1098/rspa.2019.0460
[34] Zhou, J.; Zou, Y.; Guan, S.; Liu, Z.; Boccaletti, S., Synchronization in slowly switching networks of coupled oscillators, Sci. Rep., 6, 35979, 2016 · doi:10.1038/srep35979
[35] Chowdhury, S. N.; Majhi, S.; Ghosh, D., Distance dependent competitive interactions in a frustrated network of mobile agents, IEEE Trans. Network Sci. Eng., 7, 3159-3170, 2020 · doi:10.1109/TNSE.2020.3017495
[36] Meloni, S.; Buscarino, A.; Fortuna, L.; Frasca, M.; Gómez-Gardeñes, J.; Latora, V.; Moreno, Y., Effects of mobility in a population of prisoner’s dilemma players, Phys. Rev. E, 79, 067101, 2009 · doi:10.1103/PhysRevE.79.067101
[37] Szolnoki, A.; Perc, M., Resolving social dilemmas on evolving random networks, Europhys. Lett., 86, 30007, 2009 · doi:10.1209/0295-5075/86/30007
[38] Perc, M.; Szolnoki, A., Coevolutionary games—A mini review, BioSystems, 99, 109-125, 2010 · doi:10.1016/j.biosystems.2009.10.003
[39] Cardillo, A.; Petri, G.; Nicosia, V.; Sinatra, R.; Gómez-Gardenes, J.; Latora, V., Evolutionary dynamics of time-resolved social interactions, Phys. Rev. E, 90, 052825, 2014 · doi:10.1103/PhysRevE.90.052825
[40] Perc, M.; Jordan, J. J.; Rand, D. G.; Wang, Z.; Boccaletti, S.; Szolnoki, A., Statistical physics of human cooperation, Phys. Rep., 687, 1-51, 2017 · Zbl 1366.80006 · doi:10.1016/j.physrep.2017.05.004
[41] Gross, T.; D’Lima, C. J. D.; Blasius, B., Epidemic dynamics on an adaptive network, Phys. Rev. Lett., 96, 208701, 2006 · doi:10.1103/PhysRevLett.96.208701
[42] Frasca, M.; Buscarino, A.; Rizzo, A.; Fortuna, L.; Boccaletti, S., Dynamical network model of infective mobile agents, Phys. Rev. E, 74, 036110, 2006 · doi:10.1103/PhysRevE.74.036110
[43] Perra, N.; Gonçalves, B.; Pastor-Satorras, R.; Vespignani, A., Activity driven modeling of time varying networks, Sci. Rep., 2, 469, 2012 · doi:10.1038/srep00469
[44] Kohar, V.; Sinha, S., Emergence of epidemics in rapidly varying networks, Chaos Solitons Fractals, 54, 127-134, 2013 · doi:10.1016/j.chaos.2013.07.003
[45] Liu, S.; Perra, N.; Karsai, M.; Vespignani, A., Controlling contagion processes in activity driven networks, Phys. Rev. Lett., 112, 118702, 2014 · doi:10.1103/PhysRevLett.112.118702
[46] Saxena, G.; Prasad, A.; Ramaswamy, R., Amplitude death: The emergence of stationarity in coupled nonlinear systems, Phys. Rep., 521, 205-228, 2012 · doi:10.1016/j.physrep.2012.09.003
[47] Koseska, A.; Volkov, E.; Kurths, J., Oscillation quenching mechanisms: Amplitude vs oscillation death, Phys. Rep., 531, 173-199, 2013 · Zbl 1356.34043 · doi:10.1016/j.physrep.2013.06.001
[48] Zou, W.; Senthilkumar, D.; Zhan, M.; Kurths, J., Quenching, aging, and reviving in coupled dynamical networks, Phys. Rep., 931, 1-72, 2021 · Zbl 07408899 · doi:10.1016/j.physrep.2021.07.004
[49] Eurich, C. W.; Thiel, A.; Fahse, L., Distributed delays stabilize ecological feedback systems, Phys. Rev. Lett., 94, L107, 2005 · doi:10.1103/PhysRevLett.94.158104
[50] Pyragas, K.; Lange, F.; Letz, T.; Parisi, J.; Kittel, A., Stabilization of an unstable steady state in intracavity frequency-doubled lasers, Phys. Rev. E, 61, 3721, 2000 · doi:10.1103/PhysRevE.61.3721
[51] Curtu, R., Singular Hopf bifurcations and mixed-mode oscillations in a two-cell inhibitory neural network, Physica D, 239, 504-514, 2010 · Zbl 1196.37088 · doi:10.1016/j.physd.2009.12.010
[52] Vicente, R.; Tang, S.; Mulet, J.; Mirasso, C. R.; Liu, J.-M., Synchronization properties of two self-oscillating semiconductor lasers subject to delayed optoelectronic mutual coupling, Phys. Rev. E, 73, 047201, 2006 · doi:10.1103/PhysRevE.73.047201
[53] Gassel, M.; Glatt, E.; Kaiser, F., Time-delayed feedback in a net of neural elements: Transition from oscillatory to excitable dynamics, Fluctuation Noise Lett., 7, L225-L229, 2012 · doi:10.1142/S0219477507003878
[54] Mirollo, R. E.; Strogatz, S. H., Amplitude death in an array of limit-cycle oscillators, J. Stat. Phys., 60, 245-262, 1990 · Zbl 1086.34525 · doi:10.1007/BF01013676
[55] Aronson, D. G.; Ermentrout, G. B.; Kopell, N., Amplitude response of coupled oscillators, Physica D, 41, 403-449, 1990 · Zbl 0703.34047 · doi:10.1016/0167-2789(90)90007-C
[56] Reddy, D. R.; Sen, A.; Johnston, G. L., Time delay induced death in coupled limit cycle oscillators, Phys. Rev. Lett., 80, 5109, 1998 · doi:10.1103/PhysRevLett.80.5109
[57] Sharma, P. R.; Sharma, A.; Shrimali, M. D.; Prasad, A., Targeting fixed-point solutions in nonlinear oscillators through linear augmentation, Phys. Rev. E, 83, 067201, 2011 · doi:10.1103/PhysRevE.83.067201
[58] Resmi, V.; Ambika, G.; Amritkar, R.; Rangarajan, G., Amplitude death in complex networks induced by environment, Phys. Rev. E, 85, 046211, 2012 · doi:10.1103/PhysRevE.85.046211
[59] Majhi, S.; Bera, B. K.; Bhowmick, S. K.; Ghosh, D., Restoration of oscillation in network of oscillators in presence of direct and indirect interactions, Phys. Lett. A, 380, 3617-3624, 2016 · doi:10.1016/j.physleta.2016.08.036
[60] Prasad, A.; Dhamala, M.; Adhikari, B. M.; Ramaswamy, R., Amplitude death in nonlinear oscillators with nonlinear coupling, Phys. Rev. E, 81, 027201, 2010 · doi:10.1103/PhysRevE.81.027201
[61] Hens, C.; Olusola, O. I.; Pal, P.; Dana, S. K., Oscillation death in diffusively coupled oscillators by local repulsive link, Phys. Rev. E, 88, 034902, 2013 · doi:10.1103/PhysRevE.88.034902
[62] Majhi, S.; Chowdhury, S. N.; Ghosh, D., Perspective on attractive-repulsive interactions in dynamical networks: Progress and future, Europhys. Lett., 132, 20001, 2020 · doi:10.1209/0295-5075/132/20001
[63] Jalife, J.; Gray, R. A.; Morley, G. E.; Davidenko, J. M., Self-organization and the dynamical nature of ventricular fibrillation, Chaos, 8, 79-93, 1998 · Zbl 1069.92506 · doi:10.1063/1.166289
[64] Boutle, I.; Taylor, R. H.; Römer, R. A., El Niño and the delayed action oscillator, Am. J. Phys., 75, 15-24, 2007 · Zbl 1219.86007 · doi:10.1119/1.2358155
[65] Menck, P. J.; Heitzig, J.; Kurths, J.; Schellnhuber, H. J., How dead ends undermine power grid stability, Nat. Commun., 5, 1-8, 2014 · doi:10.1038/ncomms4969
[66] Zou, W.; Senthilkumar, D.; Zhan, M.; Kurths, J., Reviving oscillations in coupled nonlinear oscillators, Phys. Rev. Lett., 111, 014101, 2013 · doi:10.1103/PhysRevLett.111.014101
[67] Zou, W.; Senthilkumar, D.; Nagao, R.; Kiss, I. Z.; Tang, Y.; Koseska, A.; Duan, J.; Kurths, J., Restoration of rhythmicity in diffusively coupled dynamical networks, Nat. Commun., 6, 7709, 2015 · doi:10.1038/ncomms8709
[68] Kundu, S.; Majhi, S.; Ghosh, D., Resumption of dynamism in damaged networks of coupled oscillators, Phys. Rev. E, 97, 052313, 2018 · doi:10.1103/PhysRevE.97.052313
[69] Panaggio, M. J.; Abrams, D. M., Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, R67, 2015 · Zbl 1392.34036 · doi:10.1088/0951-7715/28/3/R67
[70] Majhi, S.; Bera, B. K.; Ghosh, D.; Perc, M., Chimera states in neuronal networks: A review, Phys. Life Rev., 28, 100-121, 2019 · doi:10.1016/j.plrev.2018.09.003
[71] Schöll, E., Synchronization patterns and chimera states in complex networks: Interplay of topology and dynamics, Eur. Phys. J. Spec. Top., 225, 891-919, 2016 · doi:10.1140/epjst/e2016-02646-3
[72] Bera, B. K.; Majhi, S.; Ghosh, D.; Perc, M., Chimera states: Effects of different coupling topologies, Europhys. Lett., 118, 10001, 2017 · doi:10.1209/0295-5075/118/10001
[73] Parastesh, F.; Jafari, S.; Azarnoush, H.; Shahriari, Z.; Wang, Z.; Boccaletti, S.; Perc, M., Chimeras, Phys. Rep., 898, 1-114, 2021 · Zbl 1490.34044 · doi:10.1016/j.physrep.2020.10.003
[74] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 380, 2002
[75] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 174102, 2004 · doi:10.1103/PhysRevLett.93.174102
[76] Abrams, D. M.; Mirollo, R.; Strogatz, S. H.; Wiley, D. A., Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett., 101, 084103, 2008 · doi:10.1103/PhysRevLett.101.084103
[77] Kotwal, T.; Jiang, X.; Abrams, D. M., Connecting the Kuramoto model and the chimera state, Phys. Rev. Lett., 119, 264101, 2017 · doi:10.1103/PhysRevLett.119.264101
[78] Motter, A. E., Spontaneous synchrony breaking, Nat. Phys., 6, 164-165, 2010 · doi:10.1038/nphys1609
[79] Frolov, N.; Maksimenko, V.; Majhi, S.; Rakshit, S.; Ghosh, D.; Hramov, A., Chimera-like behavior in a heterogeneous Kuramoto model: The interplay between attractive and repulsive coupling, Chaos, 30, 081102, 2020 · Zbl 1445.34072 · doi:10.1063/5.0019200
[80] Omelchenko, I.; Omel’chenko, E.; Hövel, P.; Schöll, E., When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett., 110, 224101, 2013 · doi:10.1103/PhysRevLett.110.224101
[81] Bera, B. K.; Ghosh, D.; Lakshmanan, M., Chimera states in bursting neurons, Phys. Rev. E, 93, 012205, 2016 · doi:10.1103/PhysRevE.93.012205
[82] Omelchenko, I.; Provata, A.; Hizanidis, J.; Schöll, E.; Hövel, P., Robustness of chimera states for coupled Fitzhugh-Nagumo oscillators, Phys. Rev. E, 91, 022917, 2015 · doi:10.1103/PhysRevE.91.022917
[83] Vüllings, A.; Hizanidis, J.; Omelchenko, I.; Hövel, P., Clustered chimera states in systems of type-I excitability, New J. Phys., 16, 123039, 2014 · doi:10.1088/1367-2630/16/12/123039
[84] Hizanidis, J.; Kanas, V. G.; Bezerianos, A.; Bountis, T., Chimera states in networks of nonlocally coupled Hindmarsh-Rose neuron models, Int. J. Bifurcation Chaos, 24, 1450030, 2014 · Zbl 1296.34132 · doi:10.1142/S0218127414500308
[85] Bera, B. K.; Ghosh, D.; Banerjee, T., Imperfect traveling chimera states induced by local synaptic gradient coupling, Phys. Rev. E, 94, 012215, 2016 · doi:10.1103/PhysRevE.94.012215
[86] Wang, Z.; Baruni, S.; Parastesh, F.; Jafari, S.; Ghosh, D.; Perc, M.; Hussain, I., Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity, Neurocomputing, 406, 117-126, 2020 · doi:10.1016/j.neucom.2020.03.083
[87] Omelchenko, I.; Maistrenko, Y.; Hövel, P.; Schöll, E., Loss of coherence in dynamical networks: Spatial chaos and chimera states, Phys. Rev. Lett., 106, 234102, 2011 · doi:10.1103/PhysRevLett.106.234102
[88] Majhi, S.; Ghosh, D., Alternating chimeras in networks of ephaptically coupled bursting neurons, Chaos, 28, 083113, 2018 · doi:10.1063/1.5022612
[89] Zakharova, A.; Kapeller, M.; Schöll, E., Chimera death: Symmetry breaking in dynamical networks, Phys. Rev. Lett., 112, 154101, 2014 · doi:10.1103/PhysRevLett.112.154101
[90] Schmidt, L.; Krischer, K., Clustering as a prerequisite for chimera states in globally coupled systems, Phys. Rev. Lett., 114, 034101, 2015 · doi:10.1103/PhysRevLett.114.034101
[91] Yeldesbay, A.; Pikovsky, A.; Rosenblum, M., Chimeralike states in an ensemble of globally coupled oscillators, Phys. Rev. Lett., 112, 144103, 2014 · doi:10.1103/PhysRevLett.112.144103
[92] Chandrasekar, V.; Gopal, R.; Venkatesan, A.; Lakshmanan, M., Mechanism for intensity-induced chimera states in globally coupled oscillators, Phys. Rev. E, 90, 062913, 2014 · doi:10.1103/PhysRevE.90.062913
[93] Laing, C. R., Chimeras in networks with purely local coupling, Phys. Rev. E, 92, 050904, 2015 · doi:10.1103/PhysRevE.92.050904
[94] Zhu, Y.; Zheng, Z.; Yang, J., Chimera states on complex networks, Phys. Rev. E, 89, 022914, 2014 · doi:10.1103/PhysRevE.89.022914
[95] Hizanidis, J.; Kouvaris, N. E.; Zamora-López, G.; Díaz-Guilera, A.; Antonopoulos, C. G., Chimera-like states in modular neural networks, Sci. Rep., 6, 19845, 2016 · doi:10.1038/srep19845
[96] Majhi, S.; Perc, M.; Ghosh, D., Chimera states in uncoupled neurons induced by a multilayer structure, Sci. Rep., 6, 380, 2016 · doi:10.1038/srep39033
[97] Maksimenko, V. A.; Makarov, V. V.; Bera, B. K.; Ghosh, D.; Dana, S. K.; Goremyko, M. V.; Frolov, N. S.; Koronovskii, A. A.; Hramov, A. E., Excitation and suppression of chimera states by multiplexing, Phys. Rev. E, 94, 052205, 2016 · doi:10.1103/PhysRevE.94.052205
[98] Majhi, S.; Perc, M.; Ghosh, D., Chimera states in a multilayer network of coupled and uncoupled neurons, Chaos, 27, 073109, 2017 · doi:10.1063/1.4993836
[99] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys., 8, 662-665, 2012 · doi:10.1038/nphys2371
[100] Martens, E. A.; Thutupalli, S.; Fourrière, A.; Hallatschek, O., Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci. U.S.A., 110, 10563-10567, 2013 · doi:10.1073/pnas.1302880110
[101] Sethia, G. C.; Sen, A.; Johnston, G. L., Amplitude-mediated chimera states, Phys. Rev. E, 88, 042917, 2013 · doi:10.1103/PhysRevE.88.042917
[102] Xie, J.; Knobloch, E.; Kao, H.-C., Multicluster and traveling chimera states in nonlocal phase-coupled oscillators, Phys. Rev. E, 90, 022919, 2014 · doi:10.1103/PhysRevE.90.022919
[103] Kapitaniak, T.; Kuzma, P.; Wojewoda, J.; Czolczynski, K.; Maistrenko, Y., Imperfect chimera states for coupled pendula, Sci. Rep., 4, 6379, 2014 · doi:10.1038/srep06379
[104] Parastesh, F.; Jafari, S.; Azarnoush, H.; Hatef, B.; Bountis, A., Imperfect chimeras in a ring of four-dimensional simplified Lorenz systems, Chaos Solitons Fractals, 110, 203-208, 2018 · Zbl 1391.34083 · doi:10.1016/j.chaos.2018.03.025
[105] Wei, Z.; Parastesh, F.; Azarnoush, H.; Jafari, S.; Ghosh, D.; Perc, M.; Slavinec, M., Nonstationary chimeras in a neuronal network, Europhys. Lett., 123, 48003, 2018 · doi:10.1209/0295-5075/123/48003
[106] Martens, E. A.; Laing, C. R.; Strogatz, S. H., Solvable model of spiral wave chimeras, Phys. Rev. Lett., 104, 044101, 2010 · doi:10.1103/PhysRevLett.104.044101
[107] Bera, B. K.; Rakshit, S.; Ghosh, D.; Kurths, J., Spike chimera states and firing regularities in neuronal hypernetworks, Chaos, 29, 053115, 2019 · doi:10.1063/1.5088833
[108] Majhi, S.; Bera, B. K.; Ghosh, D.; Perc, M., Chimeras at the interface of physics and life sciences: Reply to comments on chimera states in neuronal networks: A review, Phys. Life Rev., 28, 142-147, 2019 · doi:10.1016/j.plrev.2019.04.001
[109] Levy, R.; Hutchison, W. D.; Lozano, A. M.; Dostrovsky, J. O., High-frequency synchronization of neuronal activity in the subthalamic nucleus of Parkinsonian patients with limb tremor, J. Neurosci., 20, 7766-7775, 2000 · doi:10.1523/JNEUROSCI.20-20-07766.2000
[110] Rattenborg, N. C.; Amlaner, C.; Lima, S., Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev., 24, 817-842, 2000 · doi:10.1016/S0149-7634(00)00039-7
[111] Prasad, A., Time-varying interaction leads to amplitude death in coupled nonlinear oscillators, Pramana, 81, 407-415, 2013 · doi:10.1007/s12043-013-0585-5
[112] Chaurasia, S. S.; Choudhary, A.; Shrimali, M. D.; Sinha, S., Suppression and revival of oscillations through time-varying interaction, Chaos Solitons Fractals, 118, 249-254, 2019 · Zbl 1442.34064 · doi:10.1016/j.chaos.2018.11.026
[113] Suresh, K.; Shrimali, M.; Prasad, A.; Thamilmaran, K., Experimental evidence for amplitude death induced by a time-varying interaction, Phys. Lett. A, 378, 2845-2850, 2014 · Zbl 1298.34095 · doi:10.1016/j.physleta.2014.07.047
[114] Shen, C.; Chen, H.; Hou, Z., Mobility and density induced amplitude death in metapopulation networks of coupled oscillators, Chaos, 24, 043125, 2014 · Zbl 1361.34056 · doi:10.1063/1.4901581
[115] Majhi, S.; Ghosh, D., Amplitude death and resurgence of oscillation in networks of mobile oscillators, Europhys. Lett., 118, 40002, 2017 · doi:10.1209/0295-5075/118/40002
[116] Buhl, J.; Sumpter, D. J.; Couzin, I. D.; Hale, J. J.; Despland, E.; Miller, E. R.; Simpson, S. J., From disorder to order in marching locusts, Science, 312, 1402-1406, 2006 · doi:10.1126/science.1125142
[117] Buscarino, A.; Fortuna, L.; Frasca, M.; Rizzo, A., Dynamical network interactions in distributed control of robots, Chaos, 16, 015116, 2006 · Zbl 1144.37329 · doi:10.1063/1.2166492
[118] Tanner, H. G., “On the controllability of nearest neighbor interconnections,” in 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601) (IEEE, 2004), Vol. 3, pp. 2467-2472.
[119] Chlamtac, I.; Conti, M.; Liu, J. J.-N., Mobile ad hoc networking: Imperatives and challenges, Ad Hoc Networks, 1, 13-64, 2003 · doi:10.1016/S1570-8705(03)00013-1
[120] Tanaka, D., General chemotactic model of oscillators, Phys. Rev. Lett., 99, 134103, 2007 · doi:10.1103/PhysRevLett.99.134103
[121] Karnatak, R.; Ramaswamy, R.; Prasad, A., Amplitude death in the absence of time delays in identical coupled oscillators, Phys. Rev. E, 76, 035201, 2007 · doi:10.1103/PhysRevE.76.035201
[122] Karnatak, R.; Ramaswamy, R.; Feudel, U., Conjugate coupling in ecosystems: Cross-predation stabilizes food webs, Chaos Solitons Fractals, 68, 48-57, 2014 · Zbl 1354.37093 · doi:10.1016/j.chaos.2014.07.003
[123] Kim, M.-Y.; Roy, R.; Aron, J. L.; Carr, T. W.; Schwartz, I. B., Scaling behavior of laser population dynamics with time-delayed coupling: Theory and experiment, Phys. Rev. Lett., 94, 088101, 2005 · doi:10.1103/PhysRevLett.94.088101
[124] Menck, P. J.; Heitzig, J.; Marwan, N.; Kurths, J., How basin stability complements the linear-stability paradigm, Nat. Phys., 9, 89-92, 2013 · doi:10.1038/nphys2516
[125] Leng, S.; Lin, W.; Kurths, J., Basin stability in delayed dynamics, Sci. Rep., 6, 1-6, 2016 · doi:10.1038/srep21449
[126] Mitra, C.; Choudhary, A.; Sinha, S.; Kurths, J.; Donner, R. V., Multiple-node basin stability in complex dynamical networks, Phys. Rev. E, 95, 032317, 2017 · doi:10.1103/PhysRevE.95.032317
[127] Mondal, A.; Sinha, S.; Kurths, J., Rapidly switched random links enhance spatiotemporal regularity, Phys. Rev. E, 78, 066209, 2008 · doi:10.1103/PhysRevE.78.066209
[128] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442, 1998 · Zbl 1368.05139 · doi:10.1038/30918
[129] Sinha, S., Random coupling of chaotic maps leads to spatiotemporal synchronization, Phys. Rev. E, 66, 016209, 2002 · doi:10.1103/PhysRevE.66.016209
[130] Gade, P. M.; Hu, C.-K., Synchronous chaos in coupled map lattices with small-world interactions, Phys. Rev. E, 62, 6409, 2000 · doi:10.1103/PhysRevE.62.6409
[131] Barahona, M.; Pecora, L. M., Synchronization in small-world systems, Phys. Rev. Lett., 89, 054101, 2002 · doi:10.1103/PhysRevLett.89.054101
[132] Poria, S.; Shrimali, M. D.; Sinha, S., Enhancement of spatiotemporal regularity in an optimal window of random coupling, Phys. Rev. E, 78, 035201, 2008 · doi:10.1103/PhysRevE.78.035201
[133] Perc, M., Stochastic resonance on excitable small-world networks via a pacemaker, Phys. Rev. E, 76, 066203, 2007 · doi:10.1103/PhysRevE.76.066203
[134] Hou, Z.; Xin, H., Oscillator death on small-world networks, Phys. Rev. E, 68, 055103, 2003 · doi:10.1103/PhysRevE.68.055103
[135] Jabeen, Z.; Sinha, S., Nonuniversal dependence of spatiotemporal regularity on randomness in coupling connections, Phys. Rev. E, 78, 066120, 2008 · doi:10.1103/PhysRevE.78.066120
[136] Yu, H.; Wang, J.; Du, J.; Deng, B.; Wei, X.; Liu, C., Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks, Phys. Rev. E, 87, 052917, 2013 · doi:10.1103/PhysRevE.87.052917
[137] May, R. M., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467, 1976 · Zbl 1369.37088 · doi:10.1038/261459a0
[138] Buscarino, A.; Frasca, M.; Gambuzza, L. V.; Hövel, P., Chimera states in time-varying complex networks, Phys. Rev. E, 91, 022817, 2015 · doi:10.1103/PhysRevE.91.022817
[139] Haugland, S. W.; Schmidt, L.; Krischer, K., Self-organized alternating chimera states in oscillatory media, Sci. Rep., 5, 1-5, 2015 · doi:10.1038/srep09883
[140] Mathews, C. G.; Lesku, J. A.; Lima, S. L.; Amlaner, C. J., Asynchronous eye closure as an anti-predator behavior in the western fence lizard (Sceloporus occidentalis), Ethology, 112, 286-292, 2006 · doi:10.1111/j.1439-0310.2006.01138.x
[141] Sinha, S., Chimera states are fragile under random links, Europhys. Lett., 128, 40004, 2019 · doi:10.1209/0295-5075/128/40004
[142] Varela, F.; Lachaux, J.-P.; Rodriguez, E.; Martinerie, J., The brainweb: Phase synchronization and large-scale integration, Nat. Rev. Neurosci., 2, 229-239, 2001 · doi:10.1038/35067550
[143] Rakshit, S.; Bera, B. K.; Majhi, S.; Hens, C.; Ghosh, D., Basin stability measure of different steady states in coupled oscillators, Sci. Rep., 7, 205, 2017 · doi:10.1038/s41598-017-00324-3
[144] Martens, E. A.; Panaggio, M. J.; Abrams, D. M., Basins of attraction for chimera states, New J. Phys., 18, 022002, 2016 · Zbl 1456.34034 · doi:10.1088/1367-2630/18/2/022002
[145] Rakshit, S.; Bera, B. K.; Perc, M.; Ghosh, D., Basin stability for chimera states, Sci. Rep., 7, 1-12, 2017 · doi:10.1038/s41598-016-0028-x
[146] Rakshit, S.; Parastesh, F.; Chowdhury, S. N.; Jafari, S.; Kurths, J.; Ghosh, D., Relay interlayer synchronisation: Invariance and stability conditions, Nonlinearity, 35, 681, 2021 · Zbl 1491.34068 · doi:10.1088/1361-6544/ac3c2f
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.