×

Cascading failure of complex networks based on load redistribution and epidemic process. (English) Zbl 1539.92148

Summary: Diseases spreading over humans and animals is a ubiquitous process that has attracted much attention recently. To deeply explore the dynamics of the disease spread process on physical-contact networks, considering immunity exists in the population and dynamical behavior of viral transmission that have similar characteristics to cascading failure model based on complex network, the cascading failure model with load distribution parameters and epidemiological SIR model is proposed based on the local characteristic of nodes. Using this model, we investigate the virus outbreak conditions of Erdős-Rény (ER) and Albert-László Barabási (BA) networks, the formulas of critical values for networks recovery are derived. With numerical simulations, we obtain the relationship between the resilience of the networks against risk and the node redundancy factor. Furthermore, the intrinsic link between virus propagation rate and redundancy coefficient is obtained with the dynamical analysis, which is crucial for keeping networks robust against perturbations. These findings may help expand the understanding of the dynamic interactions between viral transmission and cascading failure, encouraging further study on the control and prevention of infectious disease spread.

MSC:

92D30 Epidemiology

Software:

KONECT
Full Text: DOI

References:

[1] Guo, Y. R.; Cao, Q. D.; Hong, Z. S.; Tan, Y. Y.; Chen, S. D.; Jin, H. J.; Tan, K. S.; Wang, D. Y.; Yan, Y., The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status, Military Med. Res., 7, 1, 1-10 (2020)
[2] Zhai, P.; Ding, Y. B.; Wu, X.; Long, J. K.; Zhong, Y. J.; Li, Y. M., The epidemiology, diagnosis and treatment of COVID-19, Int. J. Antimicrob. Ag., 55, 5, Article 105955 pp. (2020)
[3] Tay, M. Z.; Poh, C. M.; Rénia, L.; MacAry, P. A.; Ng, L. F., The trinity of COVID-19: immunity, inflammation and intervention, Nat. Rev. Immunol., 20, 6, 363-374 (2020)
[4] Hasan, A.; Al-Ozairi, E.; Al-Baqsumi, Z.; Ahmad, R.; Al-Mulla, F., Cellular and humoral immune responses in Covid-19 and immunotherapeutic approaches, ImmunoTargets and Therapy, 10, 63 (2021)
[5] Nian, F. Z.; Yang, Y.; Shi, Y. Y., Fractal propagation and immunity on network, Fractals, 29, 06, Article 2150134 pp. (2021) · Zbl 1481.92153
[6] Hupert, N.; Marín-Hernández, D.; Gao, B.; Águas, R.; Nixon, D. F., Heterologous vaccination interventions to reduce pandemic morbidity and mortality: Modeling the US winter 2020 COVID-19 wave, Proc. Natl. Acad. Sci., 119, 3 (2022)
[7] Nadeau, S. A.; Vaughan, T. G.; Scire, J.; Huisman, J. S.; Stadler, T., The origin and early spread of SARS-CoV-2 in Europe, Proc. Natl. Acad. Sci., 118, 9 (2021)
[8] Bluhm, A.; Christandl, M.; Gesmundo, F.; Ravn Klausen, F.; Mančinska, L.; Steffan, V.; Stilck França, D.; Werner, A. H., SARS-CoV-2 transmission routes from genetic data: A Danish case study, PLoS One, 15, 10, Article e0241405 pp. (2020)
[9] Del Genio, C. I.; House, T., Endemic infections are always possible on regular networks, Phys. Rev. E, 88, 4, Article 040801 pp. (2013)
[10] Taylor, M.; Taylor, T. J.; Kiss, I. Z., Epidemic threshold and control in a dynamic network, Phys. Rev. E, 85, 1, Article 016103 pp. (2012)
[11] Bell, D. C.; Atkinson, J. S.; Carlson, J. W., Centrality measures for disease transmission networks, Social Networks, 21, 1, 1-21 (1999)
[12] Firestone, S. M.; Hayama, Y.; Lau, M. S.; Yamamoto, T.; Nishi, T.; Bradhurst, R. A.; Demirhan, H.; Stevenson, M. A.; Tsutsui, T., Transmission network reconstruction for foot-and-mouth disease outbreaks incorporating farm-level covariates, PLoS One, 15, 7, Article e0235660 pp. (2020)
[13] Altmann, M., Reinterpreting network measures for models of disease transmission, Social Networks, 15, 1, 1-17 (1993)
[14] Chen, S.; White, B. J.; Sanderson, M. W.; Amrine, D. E.; Ilany, A.; Lanzas, C., Highly dynamic animal contact network and implications on disease transmission, Sci. Rep., 4, 1, 1-7 (2014)
[15] Anderson, R. M.; May, R. M., Infectious Diseases of Humans: Dynamics and Control (1992), Oxford University Press
[16] Liu, T.; Li, P.; Chen, Y.; Zhang, J., Community size effects on epidemic spreading in multiplex social networks, PLoS One, 11, 3, Article e0152021 pp. (2016)
[17] Colizza, V.; Vespignani, A., Invasion threshold in heterogeneous metapopulation networks, Phys. Rev. Lett., 99, 14, Article 148701 pp. (2007)
[18] Dickison, M.; Havlin, S.; Stanley, H. E., Epidemics on interconnected networks, Phys. Rev. E, 85, 6, Article 066109 pp. (2012)
[19] Riley, S., Large-scale spatial-transmission models of infectious disease, Science, 316, 5829, 1298-1301 (2007)
[20] Grassly, N. C.; Fraser, C., Mathematical models of infectious disease transmission, Nat. Rev. Microbiol., 6, 6, 477-487 (2008)
[21] Jin, Y.; Wang, W. D.; Xiao, S. W., An SIRS model with a nonlinear incidence rate, Chaos Solitons Fractals, 34, 5, 1482-1497 (2007) · Zbl 1152.34339
[22] Boguá, M.; Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in complex networks with degree correlations, (Statistical Mechanics of Complex Networks (2003), Springer), 127-147 · Zbl 1132.92338
[23] Madar, N.; Kalisky, T.; Cohen, R.; Ben-avraham, D.; Havlin, S., Immunization and epidemic dynamics in complex networks, Eur. Phys. J. B, 38, 2, 269-276 (2004)
[24] Morita, S., Six susceptible-infected-susceptible models on scale-free networks, Sci. Rep., 6, 1, 1-8 (2016)
[25] Eguiluz, V. M.; Klemm, K., Epidemic threshold in structured scale-free networks, Phys. Rev. Lett., 89, 10, Article 108701 pp. (2002)
[26] Silva, D. H.; Ferreira, S. C., Activation thresholds in epidemic spreading with motile infectious agents on scale-free networks, Chaos, 28, 12, Article 123112 pp. (2018) · Zbl 1404.92203
[27] Chang, X.; Cai, C. R., Analytical computation of the epidemic prevalence and threshold for the discrete-time susceptible-infected-susceptible dynamics on static networks, Physica A, 571, Article 125850 pp. (2021) · Zbl 07458646
[28] Ren, W. D.; Wu, J. J.; Zhang, X.; Lai, R.; Chen, L., A stochastic model of cascading failure dynamics in communication networks, IEEE Trans. Circuits Syst. II, 65, 5, 632-636 (2018)
[29] Jing, K.; Du, X. R.; Shen, L. X.; Tang, L., Robustness of complex networks: Cascading failure mechanism by considering the characteristics of time delay and recovery strategy, Physica A, 534, Article 122061 pp. (2019)
[30] Xia, Y. X.; Fan, J.; Hill, D., Cascading failure in Watts-Strogatz small-world networks, Physica A, 389, 6, 1281-1285 (2010)
[31] Shen, Y.; Ren, G.; Ran, B., Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China, Transportation, 48, 2, 537-553 (2021)
[32] Song, J. J.; Cotilla-Sanchez, E.; Ghanavati, G.; Hines, P. D., Dynamic modeling of cascading failure in power systems, IEEE Trans. Power Syst., 31, 3, 2085-2095 (2015)
[33] Fu, X. W.; Yao, H. Q.; Yang, Y. S., Exploring the invulnerability of wireless sensor networks against cascading failures, Inform. Sci., 491, 289-305 (2019) · Zbl 1451.68060
[34] Duan, D. L.; Lv, C. C.; Si, S. B.; Wang, Z.; Li, D. Q.; Gao, J. X.; Havlin, S.; Stanley, H. E.; Boccaletti, S., Universal behavior of cascading failures in interdependent networks, Proc. Natl. Acad. Sci., 116, 45, 22452-22457 (2019) · Zbl 1431.90032
[35] Wang, J. W.; Rong, L. L., A model for cascading failures in scale-free networks with a breakdown probability, Physica A, 388, 7, 1289-1298 (2009)
[36] Wang, J. W.; Rong, L. L.; Zhang, L.; Zhang, Z. Z., Attack vulnerability of scale-free networks due to cascading failures, Physica A, 387, 26, 6671-6678 (2008)
[37] Motter, A. E.; Lai, Y.-C., Cascade-based attacks on complex networks, Phys. Rev. E, 66, 6, Article 065102 pp. (2002)
[38] Qi, J. J.; Sun, K.; Mei, S. W., An interaction model for simulation and mitigation of cascading failures, IEEE Trans. Power Syst., 30, 2, 804-819 (2014)
[39] Li, D. Q.; Jiang, Y. N.; Rui, K.; Havlin, S., Spatial correlation analysis of cascading failures: congestions and blackouts, Sci. Rep., 4, 1, 1-6 (2014)
[40] Zhao, J. C.; Li, D. Q.; Sanhedrai, H.; Cohen, R.; Havlin, S., Spatio-temporal propagation of cascading overload failures in spatially embedded networks, Nature Commun., 7, 1, 1-6 (2016)
[41] Fang, X. L.; Yang, Q.; Yan, W. J., Modeling and analysis of cascading failure in directed complex networks, Saf. Sci., 65, 1-9 (2014)
[42] Moussawi, A.; Derzsy, N.; Lin, X.; Szymanski, B. K.; Korniss, G., Limits of predictability of cascading overload failures in spatially-embedded networks with distributed flows, Sci. Rep., 7, 1, 1-16 (2017)
[43] Crucitti, P.; Latora, V.; Marchiori, M., Model for cascading failures in complex networks, Phys. Rev. E, 69, 4, Article 045104 pp. (2004)
[44] Zhao, L.; Park, K.; Lai, Y. C., Attack vulnerability of scale-free networks due to cascading breakdown, Phys. Rev. E, 70, 3, Article 035101 pp. (2004)
[45] Zhang, C.; Xu, X.; Dui, H. Y., Analysis of network cascading failure based on the cluster aggregation in cyber-physical systems, Reliab. Eng. Syst. Saf., 202, Article 106963 pp. (2020)
[46] Dong, S. J.; Yu, T. B.; Farahmand, H.; Mostafavi, A., Probabilistic modeling of cascading failure risk in interdependent channel and road networks in urban flooding, Sustainable Cities Soc., 62, Article 102398 pp. (2020)
[47] Azzolin, A.; Dueñas-Osorio, L.; Cadini, F.; Zio, E., Electrical and topological drivers of the cascading failure dynamics in power transmission networks, Reliab. Eng. Syst. Saf., 175, 196-206 (2018)
[48] Wang, Z. Y.; Chen, G.; Liu, L.; Hill, D. J., Cascading risk assessment in power-communication interdependent networks, Physica A, 540, Article 120496 pp. (2020)
[49] Valdez, L. D.; Shekhtman, L.; La Rocca, C. E.; Zhang, X.; Buldyrev, S. V.; Trunfio, P. A.; Braunstein, L. A.; Havlin, S., Cascading failures in complex networks, J. Complex Netw., 8, 2, cnaa013 (2020)
[50] Wu, X. Y.; Gu, R. T.; Ji, Y. F.; Stanley, H. E., Dynamic behavior analysis of an internet flow interaction model under cascading failures, Phys. Rev. E, 100, 2, Article 022309 pp. (2019)
[51] Ni, S. J.; Weng, W. G.; Zhang, H., Modeling the effects of social impact on epidemic spreading in complex networks, Physica A, 390, 23-24, 4528-4534 (2011)
[52] Liu, T.; Li, P.; Chen, Y.; Zhang, J., Community size effects on epidemic spreading in multiplex social networks, PLoS One, 11, 3, Article e0152021 pp. (2016)
[53] Wu, Q. C.; Fu, X. C.; Small, M.; Xu, X.-J., The impact of awareness on epidemic spreading in networks, Chaos, 22, 1, Article 013101 pp. (2012) · Zbl 1331.92154
[54] Scatà, M.; Di Stefano, A.; Liò, P.; La Corte, A., The impact of heterogeneity and awareness in modeling epidemic spreading on multiplex networks, Sci. Rep., 6, 1, 1-13 (2016)
[55] Noble, C.; Bagrow, J. P.; Brockmann, D., The role of caretakers in disease dynamics, J. Stat. Phys., 152, 4, 787-798 (2013)
[56] Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A., Epidemic processes in complex networks, Rev. Modern Phys., 87, 3, 925 (2015)
[57] Tregoning, J. S.; Flight, K. E.; Higham, S. L.; Wang, Z. Y.; Pierce, B. F., Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape, Nat. Rev. Immunol., 21, 10, 626-636 (2021)
[58] Koff, W. C.; Burton, D. R.; Johnson, P. R.; Walker, B. D.; King, C. R.; Nabel, G. J.; Ahmed, R.; Bhan, M. K.; Plotkin, S. A., Accelerating next-generation vaccine development for global disease prevention, Science, 340, 6136, Article 1232910 pp. (2013)
[59] Duan, D. L.; Wu, J.; Deng, H. Z.; Sha, F.; Wu, X. Y.; Tan, Y. J., Cascading failure model of complex networks based on tunable load redistribution, Syst. Eng.-Theory Practice, 33, 1, 203-208 (2013)
[60] Ke, H.; Tao, H.; Yi, T., Model for cascading failures with adaptive defense in complex networks, Chin. Phys. B, 19, 8, Article 080206 pp. (2010)
[61] Wang, J. W.; Rong, L. L., Cascading failures on complex networks based on the local preferential redistribution rule of the load, Acta Phys. Sin., 58, 6, 3714-3721 (2009)
[62] Infectious network dataset - KONECT (2017), URL http://konect.cc/networks/sociopatterns-infectious
[63] Isella, L.; Stehlé, J.; Barrat, A.; Cattuto, C.; Pinton, J.-F.; den Broeck, W. V., What’s in a crowd? Analysis of face-to-face behavioral networks, J. Theoret. Biol., 271, 1, 166-180 (2011) · Zbl 1405.92255
[64] Kunegis, J., KONECT - the koblenz network collection, (Proc. Int. Conf. on World Wide Web Companion (2013)), 1343-1350, URL http://dl.acm.org/citation.cfm?id=2488173
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.