×

Variational determination of the two-particle reduced density matrix within the doubly occupied configuration interaction space: exploiting translational and reflection invariance. (English) Zbl 1539.81155

Summary: This work incorporates translational and reflection symmetry reductions to the variational determination of the two-particle reduced density matrix (2-RDM) corresponding to the ground state of \(N\)-particle systems, within the doubly occupied configuration interaction (DOCI) space. By exploiting these symmetries within this lower-bound variational methodology it is possible to treat larger systems than those previously studied. The 2-RDM matrix elements are calculated by imposing up to four-particle \(N\)-representability constraint conditions using standard semidefinite programing algorithms. The method is applied to the one- and two-dimensional XXZ spin 1/2 model of quantum magnetism. Several observables including the energy and the spin-spin correlation functions are obtained to assess the physical content of the variationally determined 2-RDM. Comparison with quantum-Monte Carlo and matrix product state simulations shows that in most cases only requiring up to three-particle positivity conditions is enough to correctly describe the ground-state properties of these one- and two-dimensional models.

MSC:

81V70 Many-body theory; quantum Hall effect
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

Software:

SDPA
Full Text: DOI

References:

[1] Kohn W 2003 Nobel Lectures, Chemistry, 1996-2000 (Singapore: World Scientific)
[2] Shavitt I and Bartlett R J 2009 Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory(Cambridge Molecular Science) (Cambridge: Cambridge University Press) · doi:10.1017/CBO9780511596834
[3] Bartlett R J and Musiał M 2007 Rev. Mod. Phys.79 291-352 · doi:10.1103/RevModPhys.79.291
[4] Hagen G, Papenbrock T, Hjorth-Jensen M and Dean D J 2014 Rep. Prog. Phys.77 096302 · doi:10.1088/0034-4885/77/9/096302
[5] White S R 1992 Phys. Rev. Lett.69 2863-6 · doi:10.1103/PhysRevLett.69.2863
[6] Niggemann H, Klümper A and Zittartz J 1997 Z. Phys. B 104 103-10 · doi:10.1007/s002570050425
[7] Schollwöck U 2005 Rev. Mod. Phys.77 259-315 · Zbl 1205.82073 · doi:10.1103/RevModPhys.77.259
[8] Vidal G 2007 Phys. Rev. Lett.99 220405 · doi:10.1103/PhysRevLett.99.220405
[9] McMillan W L 1965 Phys. Rev.138 A442-51 · doi:10.1103/PhysRev.138.A442
[10] Ceperley D, Chester G V and Kalos M H 1977 Phys. Rev. B 16 3081-99 · doi:10.1103/PhysRevB.16.3081
[11] Mezzacapo F, Schuch N, Boninsegni M and Cirac J I 2009 New J. Phys.11 083026 · doi:10.1088/1367-2630/11/8/083026
[12] Changlani H J, Kinder J M, Umrigar C J and Chan G K L 2009 Phys. Rev. B 80 245116 · doi:10.1103/PhysRevB.80.245116
[13] Suzuki M, Miyashita S and Kuroda A 1977 Prog. Theor. Phys.58 1377-87 · Zbl 1098.81683 · doi:10.1143/ptp.58.1377
[14] Prokof’ev N V, Svistunov B V and Tupitsyn I S 1996 J. Exp. Theor. Phys. Lett.64 911-6 · doi:10.1134/1.567243
[15] Syljuåsen O F and Sandvik A W 2002 Phys. Rev. E 66 28 · doi:10.1103/physreve.66.046701
[16] Alet F, Wessel S and Troyer M 2005 Phys. Rev. E 71 036706 · doi:10.1103/PhysRevE.71.036706
[17] White S R 1993 Phys. Rev. B 48 10345-56 · doi:10.1103/PhysRevB.48.10345
[18] Perez-Garcia D, Verstraete F, Wolf M M and Cirac J I 2007 Quantum Inf. Comput.7 401-30 · Zbl 1152.81795
[19] Stoudenmire E and White S R 2012 Annu. Rev. Condens. Matter Phys.3 111-28 · doi:10.1146/annurev-conmatphys-020911-125018
[20] Orús R 2014 Ann. Phys.349 117-58 · Zbl 1343.81003 · doi:10.1016/j.aop.2014.06.013
[21] Vanderstraeten L, Haegeman J, Corboz P and Verstraete F 2016 Phys. Rev. B 94 155123 · doi:10.1103/PhysRevB.94.155123
[22] Hyatt K and Stoudenmire E M 2019 DMRG approach to optimizing two-dimensional tensor networks (arXiv:1908.08833)
[23] Sandvik A W, Singh R R P and Campbell D K 1997 Phys. Rev. B 56 14510-28 · doi:10.1103/PhysRevB.56.14510
[24] Sandvik A W 1999 Phys. Rev. B 59 R14157-60 · doi:10.1103/PhysRevB.59.R14157
[25] Loh E Y, Gubernatis J E, Scalettar R T, White S R, Scalapino D J and Sugar R L 1990 Phys. Rev. B 41 9301-7 · doi:10.1103/PhysRevB.41.9301
[26] Husimi K 1940 Proc. Physico-Mathematical Soc. Japan.22 264-314 · JFM 66.1175.02
[27] Löwdin P O 1955 Phys. Rev.97 1474-89 · Zbl 0065.44907 · doi:10.1103/PhysRev.97.1474
[28] Mayer J E 1955 Phys. Rev.100 1579-86 · Zbl 0066.44602 · doi:10.1103/PhysRev.100.1579
[29] Tredgold R H 1957 Phys. Rev.105 1421-3 · doi:10.1103/PhysRev.105.1421
[30] Coleman A J 1963 Rev. Mod. Phys.35 668-86 · doi:10.1103/RevModPhys.35.668
[31] Garrod C, Mihailović M V and Rosina M 1975 J. Math. Phys.16 868-74 · doi:10.1063/1.522634
[32] Nakata M, Nakatsuji H, Ehara M, Fukuda M, Nakata K and Fujisawa K 2001 J. Chem. Phys.114 8282-92 · doi:10.1063/1.1360199
[33] Mazziotti D A 2002 Phys. Rev. A 65 062511 · doi:10.1103/PhysRevA.65.062511
[34] Zhao Z, Braams B J, Fukuda M, Overton M L and Percus J K 2004 J. Chem. Phys.120 2095-104 · doi:10.1063/1.1636721
[35] Mihailović M and Rosina M 1975 Nucl. Phys. A 237 221-8 · doi:10.1016/0375-9474(75)90420-0
[36] Verstichel B, van Aggelen H, Neck D V, Bultinck P and Baerdemacker S D 2011 Comput. Phys. Commun.182 1235-44 · Zbl 1262.81273 · doi:10.1016/j.cpc.2011.02.005
[37] Hammond J R and Mazziotti D A 2006 Phys. Rev. A 73 062505 · doi:10.1103/PhysRevA.73.062505
[38] Verstichel B, van Aggelen H, Poelmans W, Wouters S and Neck D V 2013 Comput. Theor. Chem.1003 12-21 · doi:10.1016/j.comptc.2012.09.014
[39] Anderson J S, Nakata M, Igarashi R, Fujisawa K and Yamashita M 2013 Comput. Theor. Chem.1003 22-7 · doi:10.1016/j.comptc.2012.08.018
[40] Haim A, Kueng R and Refael G 2020 Variational-correlations approach to quantum many-body problems (arXiv:2001.06510)
[41] Wu X, Lindsey M, Zhou T, Tong Y and Lin L 2020 Phys. Rev. B 102 085123 · doi:10.1103/physrevb.102.085123
[42] Weinhold F and Wilson E B 1967 J. Chem. Phys.46 2752-8 · doi:10.1063/1.1841109
[43] Weinhold F and Wilson E B 1967 J. Chem. Phys.47 2298-311 · doi:10.1063/1.1703311
[44] Poelmans W et al 2015 J. Chem. Theor. Comput.11 4064-76 · doi:10.1021/acs.jctc.5b00378
[45] Head-Marsden K and Mazziotti D A 2017 J. Chem. Phys.147 84101 · doi:10.1063/1.4999423
[46] Alcoba D R, Torre A, Lain L, Oña O B, Massaccesi G E and Capuzzi P 2018 Hybrid treatments based on determinant seniority numbers and spatial excitation levels in the configuration interaction framework Adv. Quantum Chem. vol 76 (New York: Academic) pp 315-32
[47] Bytautas L, Henderson T M, Jiménez-Hoyos C A, Ellis J K and Scuseria G E 2011 J. Chem. Phys.135 044119 · doi:10.1063/1.3613706
[48] Alcoba D R, Torre A, Lain L, Massaccesi G E and Oña O B 2013 J. Chem. Phys.139 084103 · doi:10.1063/1.4818755
[49] Limacher P A, Ayers P W, Johnson P A, De Baerdemacker S, Van Neck D and Bultinck P 2013 J. Chem. Theor. Comput.9 1394-401 · doi:10.1021/ct300902c
[50] Alcoba D R, Torre A, Lain L, Massaccesi G E and Oña O B 2014 J. Chem. Phys.140 234103 · doi:10.1063/1.4882881
[51] Racah G 1943 Phys. Rev.63 367-82 · doi:10.1103/PhysRev.63.367
[52] Talmi I 1993 Simple Models of Complex Nuclei (New York: Harwood Academic)
[53] Rubio-García A, Alcoba D R, Capuzzi P and Dukelsky J 2018 J. Chem. Theor. Comput.14 4183-92 · doi:10.1021/acs.jctc.8b00387
[54] Alcoba D R, Capuzzi P, Rubio-García A, Dukelsky J, Massaccesi G E, Oña O B, Torre A and Lain L 2018 J. Chem. Phys.149 194105 · doi:10.1063/1.5056247
[55] Richardson R W 1966 Phys. Rev.141 949-56 · doi:10.1103/PhysRev.141.949
[56] Dukelsky J, Esebbag C and Schuck P 2001 Phys. Rev. Lett.87 066403 · doi:10.1103/PhysRevLett.87.066403
[57] Dukelsky J, Pittel S and Sierra G 2004 Rev. Mod. Phys.76 643-62 · Zbl 1205.81155 · doi:10.1103/RevModPhys.76.643
[58] Ortiz G, Somma R, Dukelsky J and Rombouts S 2005 Nucl. Phys. B 707 421-57 · Zbl 1137.82312 · doi:10.1016/j.nuclphysb.2004.11.008
[59] Sierra G, Dukelsky J, Dussel G G, von Delft J and Braun F 2000 Phys. Rev. B 61 R11890-3 · doi:10.1103/PhysRevB.61.R11890
[60] Rubio-García A, Dukelsky J, Alcoba D R, Capuzzi P, Oña O B, Ríos E, Torre A and Lain L 2019 J. Chem. Phys.151 154104 · doi:10.1063/1.5118899
[61] Coleman A J and Yukalov V I 2000 Reduced Density Matrices: Coulson’s Challenge(Lecture Notes in Chemistry) (Berlin: Springer) · Zbl 0998.81506 · doi:10.1007/978-3-642-58304-9
[62] Mazziotti D A and Erdahl R M 2001 Phys. Rev. A 63 042113 · doi:10.1103/PhysRevA.63.042113
[63] Garrod C and Percus J K 1964 J. Math. Phys.5 1756-76 · Zbl 0129.44401 · doi:10.1063/1.1704098
[64] Poelmans W 2015 Variational determination of the two-particle density matrix: the case of doubly-occupied space PhD Thesis Ghent University
[65] Rubin N C and Mazziotti D A 2016 Necessary N-representability constraints from time-reversal symmetry for periodic systems (arXiv:1606.06262)
[66] Ewing S and Mazziotti D A 2020 Strong correlation in molecular periodic systems from a variational reduced density matrix theory (arXiv:2008.02779)
[67] Yamashita M, Fujisawa K, Fukuda M, Kobayashi K, Nakata K and Maho Nakata M 2011 Latest developments in the SDPA Family for solving large-scale SDPs Semidefinite, Cone Polynomial Optim. ed M F Anjos and J B Lasserre (New York: Springer) p 687
[68] Yamashita M, Fujisawa K, Nakata K, Nakata M, Fukuda M, Kobayashi K and Goto K 2010 A high-performance software package for semidefinite programs: SDPA 7 Technical Report
[69] Bauer B et al and ALPS Collaboration 2011 J. Stat. Mech. Theor. Exp.2011 P05001 · doi:10.1088/1742-5468/2011/05/P05001
[70] Albuquerque A F et al and ALPS Collaboration 2007 J. Magn. Magn. Mater.310 1187-93 · doi:10.1016/j.jmmm.2006.10.304
[71] Todo S and Kato K 2001 Phys. Rev. Lett.87 047203 · doi:10.1103/PhysRevLett.87.047203
[72] Barthel T and Hübener R 2012 Phys. Rev. Lett.108 1-5 · doi:10.1103/physrevlett.108.200404
[73] Lin H Q, Flynn J S and Betts D D 2001 Phys. Rev. B 64 214411 · doi:10.1103/PhysRevB.64.214411
[74] Bishop R, Li P, Zinke R, Darradi R, Richter J, Farnell D and Schulenburg J 2017 J. Magn. Magn. Mater.428 178-88 · doi:10.1016/j.jmmm.2016.11.043
[75] Auerbach A 1994 Interacting Electrons and Quantum Magnetism(Graduate Texts in Contemporary Physics) (Berlin: Springer) (http://link.springer.com/10.1007/978-1-4612-0869-3) · doi:10.1007/978-1-4612-0869-3
[76] Yang C N and Yang C P 1966 Phys. Rev.147 303-6 · doi:10.1103/physrev.147.303
[77] Jordan P and Wigner E 1928 Z. Phys.47 631-51 · JFM 54.0983.03 · doi:10.1007/bf01331938
[78] Erdahl R M and Rosina M 1974 The b-condition is implied by the g-condition Reduced Density Operators with Applications to Physical and Chemical Systems-II(Queen’s Papers in Pure and Applied Mathematics vol 40) ed R M Erdahl (Kingston, Ontario: Queens University) p 36
[79] Rubin N C and Mazziotti D A 2015 J. Phys. Chem. C 119 14706-13 · doi:10.1021/jp5130266
[80] Erdahl R M and Jin B 2000 J. Mol. Struct. THEOCHEM527 207-20 · doi:10.1016/s0166-1280(00)00494-2
[81] van Aggelen H, Verstichel B, Acke G, Degroote M, Bultinck P, Ayers P W and Van Neck D 2013 Comput. Theor. Chem.1003 50-4 · doi:10.1016/j.comptc.2012.09.036
[82] Maradzike E and DePrince A E 2018 J. Chem. Phys.149 234101 · doi:10.1063/1.5048924
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.