×

A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation. (English) Zbl 1324.65119

Summary: We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation operator, and on the use of cut-off functions. Numerical experiments are presented.

MSC:

65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K05 Heat equation
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

References:

[1] M. Ainsworth: A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45 (2007), 1777-1798. · Zbl 1151.65083 · doi:10.1137/060665993
[2] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002), 1749-1779. · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[3] R. Becker, P. Hansbo, M.G. Larson: Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Eng. 192 (2003), 723-733. · Zbl 1042.65083 · doi:10.1016/S0045-7825(02)00593-5
[4] E. Dari, R. Duran, C. Padra, V. Vampa: A posteriori error estimators for nonconforming finite element methods. RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 385-400. · Zbl 0853.65110
[5] A. Ern, M. Vohralík: A posteriori error estimation based on potential and flux reconstruction for the heat equation. SIAM J. Numer. Anal. 48 (2010), 198-223. · Zbl 1215.65152 · doi:10.1137/090759008
[6] M. Feistauer, V. Dolejší, V. Kučera, V. Sobotíková: L∞ (L2)-error estimates for the DGFEM applied to convection-diffusion problems on nonconforming meshes. J. Numer. Math. 17 (2009), 45-65. · Zbl 1171.65064 · doi:10.1515/JNUM.2009.004
[7] Girault, V.; Raviart, P.-A., Finite Element Methods for Navier-Stokes Equations. Theory and algorithms. (Extended version of the 1979 publ.) (1986), Berlin · Zbl 0585.65077
[8] O. A. Karakashian, F. Pascal: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41 (2003), 2374-2399. · Zbl 1058.65120 · doi:10.1137/S0036142902405217
[9] Karakashian, O. A.; Pascal, F.; Neittaanmäki, P. (ed.); etal., Adaptive discontinuous Galerkin approximations of second-order elliptic problems (2004), Jyväskylä
[10] O. A. Karakashian, F. Pascal: Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007), 641-665. · Zbl 1140.65083 · doi:10.1137/05063979X
[11] J. Nečas: Direct methods in the theory of elliptic equations. Academia, Prague, 1967; Masson et Cie, Paris, 1967. (In French.) · Zbl 1225.35003
[12] S. Nicaise, N. Soualem: A posteriori error estimates for a nonconforming finite element discretization of the heat equation. ESAIM, Math. Model. Numer. Anal. 39 (2005), 319-348. · Zbl 1078.65079 · doi:10.1051/m2an:2005009
[13] S. Repin: Estimates of deviations from exact solutions of initial-boundary value problem for the heat equation. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 13 (2002), 121-133. · Zbl 1221.65244
[14] I. Šebestová: A posteriori error estimates of the discontinuous Galerkin method for convection-diffusion equations. Master Thesis. Charles University in Prague, Prague, 2009.
[15] I. Šebestová, V. Dolejší: A posteriori error estimates of the discontinuous Galerkin method for the heat conduction equation. Acta Univ. Carol., Math. Phys. 53 (2012), 77-94. · Zbl 1280.65098
[16] R. Verfürth: A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003), 195-212. · Zbl 1168.65418 · doi:10.1007/s10092-003-0073-2
[17] Verfürth, R., A review of a posteriori error estimation and adaptive mesh-refinement techniques (1996), Chichester · Zbl 0853.65108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.