×

New results concerning the DWR method for some nonconforming FEM. (English) Zbl 1274.65293

This paper deals with the dual-weighted residual (DWR) method for a posteriori error estimation in the case of a class of nonconforming finite element methods (FEMs). The method is presented using a model problem of two-dimensional Poisson equation with homogeneous Dirichlet boundary conditions. The author uses the Helmholtz decomposition and derives new error identities. These results are then applied to two particular nonconforming finite elements, and corresponding error indicators are derived.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

References:

[1] M. Ainsworth: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42 (2005), 2320–2341. · Zbl 1085.65102 · doi:10.1137/S0036142903425112
[2] M. Ainsworth: A posteriori error estimation for non-conforming quadrilateral finite elements. Int. J. Numer. Anal. Model. 2 (2005), 1–18. · Zbl 1071.65141
[3] M. Ainsworth, R. Rankin: Fully computable bounds for the error in nonconforming finite element approximations of arbitrary order on triangular elements. SIAM J. Numer. Anal. 46 (2008), 3207–3232. · Zbl 1180.65141 · doi:10.1137/07070838X
[4] M. Ainsworth, T. Vejchodský: Fully computable robust a posteriori error bounds for singularly perturbed reaction-diffusion problems. Numer. Math. 119 (2011), 219–243. · Zbl 1229.65194 · doi:10.1007/s00211-011-0384-1
[5] R. Becker, R. Rannacher: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numerica 10 (2001), 1–102. · Zbl 1105.65349 · doi:10.1017/S0962492901000010
[6] C. Carstensen, J. Hu, A. Orlando: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J. Numer. Anal. 45 (2007), 68–82. · Zbl 1165.65072 · doi:10.1137/050628854
[7] C. Carstensen, J. Hu: A unifying theory of a posteriori error control of nonconforming finite element methods. Numer. Math. 107 (2007), 473–502. · Zbl 1127.65083 · doi:10.1007/s00211-007-0068-z
[8] E. Dari, R. Duran, C. Padra, V. Vampa: A posteriori error estimators for nonconforming finite element methods. RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 385–400. · Zbl 0853.65110
[9] J. Douglas Jr., J. E. Santos, D. Sheen, X. Ye: Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. M2AN, Math. Model. Numer. Anal. 33 (1999), 747–770. · Zbl 0941.65115 · doi:10.1051/m2an:1999161
[10] M. Grajewski, J. Hron, S. Turek: Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals. Appl. Numer. Math. 54 (2005), 504–518. · Zbl 1074.65123 · doi:10.1016/j.apnum.2004.09.016
[11] H.-D. Han: A finite element approximation of Navier-Stokes equations using nonconforming elements. J. Comput. Math. 2 (1984), 77–88. · Zbl 0598.76029
[12] G. Kanschat, F.-T. Suttmeier: A posteriori error estimates for nonconforming finite element schemes. Calcolo 36 (1999), 129–141. · Zbl 0936.65128 · doi:10.1007/s100920050027
[13] R. Rannacher, S. Turek: Simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differ. Equations 8 (1992), 97–111. · Zbl 0742.76051 · doi:10.1002/num.1690080202
[14] F. Schieweck: A posteriori error estimates with post-processing for nonconforming finite elements. M2AN, Math. Model. Numer. Anal. 36 (2002), 489–503. · Zbl 1041.65083 · doi:10.1051/m2an:2002022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.