×

A 3D non-stationary Boussinesq system with Navier-slip boundary conditions. (English) Zbl 1500.35240

Summary: In this paper we study a 3D non-stationary Boussinesq system with Navier-slip boundary conditions for the velocity field and Neumann boundary conditions for the temperature. Considering the viscosity and diffusion coefficient as explicit functions depending on the temperature, we prove the existence of weak solutions and present a regularity result that allow us obtain global-in-time strong solutions.

MSC:

35Q35 PDEs in connection with fluid mechanics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35D30 Weak solutions to PDEs
35D35 Strong solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI

References:

[1] Alekseev, GV, Solvability of stationary boundary control problems for heat convection equations, Sib. Math. J., 39, 982-998 (1998) · Zbl 0919.49004 · doi:10.1007/BF02672906
[2] Alghamdi, AM; Omre, IB; Gala, S.; Ragusa, MA, A regularity criterion to the 3D Boussinesq equations, Sib. Elect. Math. Rep., 16, 1795-1804 (2019) · Zbl 1431.35119
[3] Amrouche, C.; Rejaiba, A., \(L_p\)-theory for Stokes and Navier-Stokes equations with Navier boundary condition, J. Diff. Equ., 256, 4, 1515-1547 (2014) · Zbl 1285.35063 · doi:10.1016/j.jde.2013.11.005
[4] Baranovskii, E.S., Domnich, A.D., Artemov, M.A.: Optimal boundary control of non-isothermal viscous fluid flow. Fluids, 4(3), Art. 133, 2019
[5] Baranovskii, ES; Domnich, AA, Model of a nonuniformly heated viscous flow through a bounded domain, Diff. Equ., 56, 3, 304-314 (2020) · Zbl 1440.35262 · doi:10.1134/S0012266120030039
[6] Beirão da V H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions. Adv. Diff. Equ. 9(9-1), 1079-1114 (2004) · Zbl 1103.35084
[7] Boldrini, J.L., Mallea-Zepeda, E., Rojas-Medar, M.A.: Optimal boundary control for stationary Boussinesq equations with variable density. Commun. Contemp. Math., 22(5)1950031, 34pp, (2020) · Zbl 1443.49006
[8] Brandolese, L.; Schonbek, ME, Large time decay and growth for solutions of a viscous Boussinesq system, Trans. Am. Math. Soc., 364, 5057-5090 (2012) · Zbl 1368.35217 · doi:10.1090/S0002-9947-2012-05432-8
[9] Climent-Ezquerra, B.; Guillén-González, F.; Rojas-Medar, MA, Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for the temperature, Proc. R. Soc. A, 463, 2153-2164 (2007) · Zbl 1132.76014 · doi:10.1098/rspa.2007.1867
[10] Coron, F., Derivation of slip boundary conditions for the Navier-Stokes system from the Boltzmann equation, J. Stat. Phys., 54, 829-857 (1989) · Zbl 0666.76103 · doi:10.1007/BF01019777
[11] Coron, J-M, On the controllability of the 2-D incompressible Navier-Stokes equations with Navier slip boundary condition, ESAIM Control Optim. Cal. Var., 1, 35-75 (1996) · Zbl 0872.93040 · doi:10.1051/cocv:1996102
[12] de Almeida, M.; Ferreira, LCF, On the well posedness and large-time behavior for Boussinesq equations in Morrey spaces, Diff. Integral Eqns., 24, 719-742 (2011) · Zbl 1249.35273
[13] Drazin, P.G., Reid, W.H.: Hydrodynamic stability. Press, Cambridge Uni (1981) · Zbl 0449.76027
[14] Fan, J.; Ozwa, T., Regularity criteria for the 3D density-dependent Boussinesq equations, Nonlinearity, 22, 3, 553-568 (2009) · Zbl 1168.35416 · doi:10.1088/0951-7715/22/3/003
[15] Fan, J.; Li, F.; Nakamura, G., Regularity criteria and uniform estimates for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity, J. Math. Phys., 55, 5, 14 (2014) · Zbl 1338.35358 · doi:10.1063/1.4878495
[16] Ferreira, L.C.F., Villamizar-Roa, E.J.: Existence of solutions to the convection problem in a pseudomeasure-type space. Proc. R. Soc. Lond. Ser A Math. Phys. Eng. Sci., 464, 1983-1999 (2008) · Zbl 1145.76364
[17] Ferreira, LCF; Villamizar-Roa, EJ, Well-posedness and asymptotic behavior for the convection problem in \(\mathbb{R}^n\), Nonlinearity, 19, 2169-21191 (2006) · Zbl 1124.35055 · doi:10.1088/0951-7715/19/9/011
[18] Ferreira, LCF; Villamizar-Roa, EJ, On the stability problem for the Boussinesq equations in weak-\(L^p\) spaces, Commun. Pure Appl. Anal., 9, 667-684 (2010) · Zbl 1189.35252 · doi:10.3934/cpaa.2010.9.667
[19] Ferreira, LCF; Villamizar-Roa, EJ, Strong solutions and inviscid limit for Boussinesq system with partial viscosity, Commun. Math. Sci., 11, 2, 421-439 (2013) · Zbl 1310.35195 · doi:10.4310/CMS.2013.v11.n2.a5
[20] Ferreira, LCF; Planas, G.; Villamizar-Roa, EJ, On the nonhomogeneous Navier-Stokes system with Navier friction boundary conditions, SIAM J. Math. Anal., 45, 4, 2576-2595 (2013) · Zbl 1274.35266 · doi:10.1137/12089380X
[21] Fujita, H., A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions, Rest. Inst. Math. Sci. Kōkyūroku, 888, 199-216 (1994) · Zbl 0939.76527
[22] Fujita, H., A coherent analysis of Stokes flow under boundary conditions of friction type, J. Comp. Appl. Math., 149, 57-69 (2002) · Zbl 1058.76023 · doi:10.1016/S0377-0427(02)00520-4
[23] Gala, S.; Ragusa, MA, Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices, Appl. Anal., 95, 6, 1271-1279 (2016) · Zbl 1336.35289 · doi:10.1080/00036811.2015.1061122
[24] Gala, S.; Ragusa, MA, A regularity criterion of weak solutions to the 3D Boussinesq equations, Bull. Braz. Math. Soc. (N.S.), 51, 2, 513-525 (2020) · Zbl 1437.35574 · doi:10.1007/s00574-019-00162-z
[25] Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes equations, 2nd edn. Springer, New York (2011) · Zbl 1245.35002
[26] Graham, A., Shear patterns in a unstable layer of air, Philos. Trans. R. Soc. Lond Ser. A., 232, 285-296 (1933) · doi:10.1098/rsta.1934.0008
[27] Guillén-González, F.; Planas, G., On the asymptotic behavior of the 2D Navier-Stokes equations with Navier friction conditions towards Euler equations, Z. Angew. Math. Phys., 89, 10, 810-822 (2009) · Zbl 1176.35129 · doi:10.1002/zamm.200800089
[28] Hishida, T., On a class of stable flows to the exterior convection problem, J. Diff. Equ., 141, 54-85 (1997) · Zbl 0905.35065 · doi:10.1006/jdeq.1997.3323
[29] Iftimie, D.; Planas, G., Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions, Nonlinearity, 19, 899-918 (2006) · Zbl 1169.35365 · doi:10.1088/0951-7715/19/4/007
[30] Jägger, W.; Mikelić, A., On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Diff. Equ., 170, 96-122 (2001) · Zbl 1009.76017 · doi:10.1006/jdeq.2000.3814
[31] Jiu, Q.; Lui, J., Global well-posedness of 2D Boussinesq equations with mixed partial temperature-dependent viscosity and thermal diffusivity, Nonlinear Anal., 132, 227-239 (2016) · Zbl 1335.35197 · doi:10.1016/j.na.2015.11.010
[32] Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, Vol. 1. Travaux et recherches mathématiques, No. 17 Dunod, Paris 1968 · Zbl 0165.10801
[33] Lions, J.L.: Quelques métodes de résolution des problèmes aux limites non linéares. Dunod, Paris (1969) · Zbl 0189.40603
[34] Lopes Filho, MC; Nussenveig Lopes, HJ; Planas, G., On the inviscid limit for two-dimensional incompressible flow with Navier friction condition, SIAM J. Math. Anal., 36, 4, 1130-1141 (2005) · Zbl 1084.35060 · doi:10.1137/S0036141003432341
[35] Lorca, S.; Boldrini, JL, The initial value problem for a generalized Boussinesq model, Nonlinear Anal., 36, 457-480 (1999) · Zbl 0930.35136 · doi:10.1016/S0362-546X(97)00635-4
[36] Mallea-Zepeda, E., Lenes, E., Valero, E.: Boundary control problem for heat convection equations with slip boundary condition. Math. Probl. Engng., Art. ID 7959761, 14pp., 2018 · Zbl 1427.49025
[37] Mechdene, M., Gala, S., Guo, Z., Ragusa, M.A.: Logarithmical regularity criterion of the three-dimensional Boussinesq equations in terms of the pressure. Z. Angew. Math. Ohys., Vol. 67, no. 5, Art. 120, 10pp, 2016 · Zbl 1362.35237
[38] Morimoto, H., Nonstationary Boussinesq equations, J. Fac. Univ. Tokyo Sect. IA Math., 39, 61-75 (1992) · Zbl 0779.76083
[39] Mulone, G.; Salemi, F., On the existence of hydrodynamic motion in a domain with mixed boundary type condition, Meccanica, 18, 3, 136-144 (1983) · Zbl 0529.76035 · doi:10.1007/BF02128580
[40] Mulone, G.; Salemi, F., On the hydrodynamic motion in a domain with mixed boundary contidions: existence, uniqueness, stability and linearization principle, Anal. Mat. Pura Appl., 4, 139, 147-174 (1985) · Zbl 0596.35107 · doi:10.1007/BF01766853
[41] Navier, C.L.: Sur le lois l’équilibrie et du mouvement des corpos élastiques. Mem. Acad. R. Sci. Inst. France, Vol. 369, 1827
[42] Nirenberg L. (1959) On elliptic partial differential equations. Ann. Sci. Norm. Super. Pisa Cl. Sci., 13(3)115-162 · Zbl 0088.07601
[43] Ortega-Torres, E.; Villamizar-Roa, EJ, On a generalized Boussinesq model around a rotating obstacle: existence of strong solutions, Discret. Contin. Dyn. Syst. Ser. B, 15, 3, 825-847 (2011) · Zbl 1217.35147
[44] Prodi, G., Un teorema di unicità per le equazioné di Navier-Stokes, Ann. Mat. Pura Appl., 48, 173-182 (1959) · Zbl 0148.08202 · doi:10.1007/BF02410664
[45] Qiu, H., Du, Y., Yao., Z.: Local existence and blow-up criterion for the generalized Boussinesq equations in Besov spaces. Math. Methods Appl. Sci. 36(1), 86-98 (2013) · Zbl 1257.35153
[46] Rionero, S.; Mulone, G., Existence and uniqueness theorems for a steady thermo-diffusive mixture in a mixed problem, Nonlinear Anal., 12, 5, 473-494 (1988) · Zbl 0665.35016 · doi:10.1016/0362-546X(88)90044-2
[47] Serrin, J., On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9, 187-195 (1962) · Zbl 0106.18302 · doi:10.1007/BF00253344
[48] Simon, J., Compact sets in the space \(L^p(0, T;B)\), Ann. Mat. Pura Appl., 146, 65-96 (1987) · Zbl 0629.46031 · doi:10.1007/BF01762360
[49] Solonnikov, VA; Scadilov, VE, A certain boundary value problem for the stationary system of Navier-Stokes equations, Trudy Mat. Inst. Imeni V.A. Steklova, 125, 196-210 (1973) · Zbl 0313.35063
[50] Sun, Y.; Zhang, Z., Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity, J. Differ. Equ., 255, 6, 1069-1085 (2013) · Zbl 1284.35322 · doi:10.1016/j.jde.2013.04.032
[51] Temam, R.: Navier-Stokes equations and nonlinear functional analysis. SIAM, Philadelphia (1983) · Zbl 0522.35002
[52] Temam, R.: Navier-Stokes equations. Theory and numerical analysis. AMS Chelsea Publ, Providence, RI (2001) · Zbl 0981.35001
[53] Tippelskirch, H., Über Konvektionszellen insbesondere im flüssigen Schwefel, Beiträge Phys. Atmos., 20, 37-54 (1956)
[54] Ye, Z., Global well-posedness for a model of 2D temperature-dependent Boussinesq equations without diffusivity, J. Differ. Equ., 271, 107-127 (2021) · Zbl 1454.35308 · doi:10.1016/j.jde.2020.08.025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.