×

Virtual element methods for nonlocal parabolic problems on general type of meshes. (English) Zbl 1471.65131

Summary: In this paper, we consider the discretization of a parabolic nonlocal problem within the framework of the virtual element method. Using the fixed point argument, we prove that the fully discrete scheme has a unique solution. The presence of the nonlocal term makes the problem nonlinear, and the resulting nonlinear equations are solved using the Newton method. The computational cost of the Jacobian of the nonlinear scheme increases in the presence of nonlocal coefficient. To reduce the computational burden in computing the Jacobian, which otherwise is inevitable in the usual approach, in this paper, we propose an equivalent formulation. A priori error estimates in the \(L^2\) and the \(H^1\) norms are derived. Furthermore, we employ a linearized scheme without compromising the rate of convergence in the respective norms. Finally, the theoretical convergence results are verified through numerical experiments over polygonal meshes.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65H10 Numerical computation of solutions to systems of equations
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] Chaudhary, S.; Srivastava, V.; Kumar, VS; Srinivasan, B., Finite element approximation of nonlocal parabolic problem, Numer. Methods Partial Differential Equations, 33, 3, 786-813 (2017) · Zbl 1373.65092
[2] Anaya, V.; Bendahmane, M.; Mora, D.; Spúlveda, M., A virtual element method for a nonlocal FitzHugh-Nagumo model of cardiac electrophysiology, IMA J. Numer. Anal., 40, 2, 1544-1579 (2020) · Zbl 1466.65116
[3] Bendahmane, M.; Sepúlveda, M., Convergence of a finite volume scheme for nonlocal reaction-diffusion systems modelling an epidemic disease, Discrete Contin. Dyn. Syst. Ser. B, 11, 4, 823-853 (2009) · Zbl 1179.35028
[4] Gudi, T., Finite element method for a nonlocal problem of Kirchhoff type, SIAM J. Numer. Anal., 50, 2, 657-668 (2012) · Zbl 1457.65196
[5] Sharma, N.; Pani, AK; Sharma, KK, Expanded mixed fem with lowest order rt elements for nonlinear and nonlocal parabolic problems, Adv. Comput. Math., 44, 5, 1537-1571 (2018) · Zbl 1404.65181
[6] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., The Mimetic Finite Difference Method for Elliptic Problems, vol. 11 (2014), Berlin: Springer, Berlin · Zbl 1286.65141
[7] Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 5, 1872-1896 (2005) · Zbl 1108.65102
[8] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes, SIAM J. Numer. Anal., 49, 5, 1737-1760 (2011) · Zbl 1242.65215
[9] Sukumar, N.; Malsch, EA, Recent advances in the construction of polygonal finite element interpolants, Arch. Comput. Methods Eng., 13, 1, 129 (2006) · Zbl 1101.65108
[10] Sze, KY; Sheng, N., Polygonal finite element method for nonlinear constitutive modeling of polycrystalline ferroelectrics, Finite Elem. Anal. Des., 42, 2, 107-129 (2005)
[11] Bishop, JE, A displacement based finite element formulation for general polyhedra using harmonic shape functions, Int. J. Numer. Meth. Eng., 97, 1-31 (2014) · Zbl 1352.74326
[12] Beirão da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, LD; Russo, A., Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 23, 1, 199-214 (2013) · Zbl 1416.65433
[13] Manzini, G.; Russo, A.; Sukumar, N., New perspectives on polygonal and polyhedral finite element method, Math. Models Methods Appl. Sci., 24, 1665-1699 (2014) · Zbl 1291.65322
[14] Natarajan, S.; Ooi, ET; Chiong, I.; Song, C., Convergence and accuracy of displacement based finite element formulation over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation, Finite Elem. Anal. Des., 85, 101-122 (2014)
[15] Natarajan, S.; Bordas, SPA; Ooi, ET, Virtual and smoothed finite elements: a connection and its application to polygonal/polyhedral finite element methods, Int. J. Numer. Meth. Eng., 104, 1173-1199 (2015) · Zbl 1352.65531
[16] Cockburn, B.; Di Pietro, D.; Ern, A., Bridging the hybrid high-order and hybridizable discontinuous galerkin methods, ESAIM Math. Model. Numer. Anal., 50, 3, 635-650 (2016) · Zbl 1341.65045
[17] Di Pietro, DA; Ern, A., A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Engrg., 283, 1-21 (2015) · Zbl 1423.74876
[18] Natarajan, S.; Ooi, ET; Saputra, A.; Song, C., A scaled boundary finite element formulation over arbitrary faceted star convex polyhedra, Eng. Anal. Bound. Elem., 80, 218-229 (2017) · Zbl 1403.65217
[19] Song, C.; Ooi, ET; Natarajan, S., A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics, Eng. Fract. Mech., 187, 45-73 (2018)
[20] Gain, AL; Talischi, C.; Paulino, GH, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes, Comput. Methods Appl. Mech. Eng., 282, 132-160 (2014) · Zbl 1423.74095
[21] Beirão da Veiga, L.; Brezzi, F.; Marini, LD, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51, 2, 794-812 (2013) · Zbl 1268.74010
[22] Beirão da Veiga, L.; Lovadina, C.; Mora, D., A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Eng., 295, 327-346 (2015) · Zbl 1423.74120
[23] Mora, D.; Rivera, G., A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations, IMA J. Numer. Anal., 40, 1, 322-357 (2020) · Zbl 1466.65197
[24] Brezzi, F.; Marini, LD, Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Eng., 253, 455-462 (2013) · Zbl 1297.74049
[25] Beirão da Veiga, L.; Mora, D.; Rivera, G., Virtual elements for a shear-deflection formulation of reissner-mindlin plates, Math. Comp., 88, 315, 149-178 (2019) · Zbl 1404.65258
[26] Antonietti, PF; Beirão da Veiga, L.; Mora, D.; Verani, M., A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM J. Numer. Anal., 52, 1, 386-404 (2014) · Zbl 1427.76198
[27] Beirão da Veiga, L.; Lovadina, C.; Vacca, G., Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM Math. Model. Numer. Anal., 51, 2, 509-535 (2017) · Zbl 1398.76094
[28] Beirão da Veiga, L.; Lovadina, C.; Vacca, G., Virtual elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer. Anal., 56, 3, 1210-1242 (2018) · Zbl 1397.65302
[29] Cáceres, E.; Gatica, G., A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem, IMA J. Numer. Anal., 37, 1, 296-331 (2017) · Zbl 1433.76071
[30] Mora, D.; Rivera, G.; Rodríguez, R., A virtual element method for the Steklov eigenvalue problem, Math. Model Methods Appl. Sci., 25, 8, 1421-1445 (2015) · Zbl 1330.65172
[31] Mora, D.; Rivera, G.; Rodríguez, R., A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem, Comput. Math. Appl., 74, 9, 2172-2190 (2017) · Zbl 1397.65246
[32] Beirão da Veiga, L.; Mora, D.; Rivera, G.; Rodríguez, R., A virtual element method for the acoustic vibration problem, Numer. Math., 136, 3, 725-763 (2017) · Zbl 1397.76059
[33] Čertík, O.; Gardini, F.; Manzini, G.; Vacca, G., The virtual element method for eigenvalue problems with potential terms on polytopic meshes, Appl. Math., 63, 3, 333-365 (2018) · Zbl 1488.65196
[34] Gardini, F.; Vacca, G., Virtual element method for second-order elliptic eigenvalue problems, IMA J. Numer. Anal., 38, 4, 2026-2054 (2018) · Zbl 1477.65182
[35] Mora, D.; Velásquez, I., Virtual element for the buckling problem of Kirchhoff-Love plates, Comput. Methods Appl. Mech. Engrg., 360, 112687, 1-21 (2020) · Zbl 1441.74266
[36] Vacca, G.; Beirão da Veiga, L., Virtual element methods for parabolic problems on polygonal meshes, Numer. Methods Partial Differential Equations, 31, 6, 2110-2134 (2015) · Zbl 1336.65171
[37] Vacca, G., Virtual element methods for hyperbolic problems on polygonal meshes, Comput. Math. Appl., 74, 882-898 (2017) · Zbl 1448.65177
[38] Adak, D.; Natarajan, E.; Kumar, S., Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes, Numer. Methods Partial Differential Equations, 35, 1, 222-245 (2019) · Zbl 1419.65040
[39] Adak, D.; Natarajan, E.; Kumar, S., Virtual element method for semilinear hyperbolic problems on polygonal meshes, Int. J. Comput. Math., 96, 5, 971-991 (2019) · Zbl 1433.65271
[40] Ayuso de Dios, B.; Lipnikov, K.; Manzini, G., The nonconforming virtual element method, ESAIM Math. Model. Numer. Anal., 50, 3, 879-904 (2016) · Zbl 1343.65140
[41] Cangiani, A.; Gyrya, V.; Manzini, G., The nonconforming virtual element method for the Stokes equations, SIAM J. Numer. Anal., 54, 6, 3411-3435 (2016) · Zbl 1426.76230
[42] Cangiani, A.; Manzini, G.; Sutton, OJ, Conforming and nonconforming virtual element methods for elliptic problems, IMA J. Numer. Anal., 37, 3, 1317-1354 (2016) · Zbl 1433.65282
[43] Beirão da Veiga, L.; Brezzi, F.; Marini, LD; Russo, A., Mixed virtual element methods for general second order elliptic problems on polygonal meshes, ESAIM Math. Model. Numer. Anal., 50, 3, 727-747 (2016) · Zbl 1343.65134
[44] Beirão da Veiga, L.; Mora, D.; Vacca, G., The Stokes complex for virtual elements with application to Navier-Stokes flows, J. Sci. Comput., 81, 2, 990-1018 (2019) · Zbl 1446.65185
[45] Cangiani, A., Chatzipantelidis, P., Diwan, G., Georgoulis, E.H.: Virtual element method for quasilinear elliptic problems. IMA J. Numer. Anal. (in press) (2020) · Zbl 1466.65182
[46] Gatica, G.; Munar, M.; Sequeira, F., A mixed virtual element method for the Navier-Stokes equations, Math. Models Methods Appl. Sci., 28, 14, 2719-2762 (2018) · Zbl 1411.76062
[47] Chipot, M.; Valente, V.; Vergara Caffarelli, G., Remarks on a nonlocal problem involving the Dirichlet energy, Rend. Sem. Mat. Univ. Padova, 110, 199-220 (2003) · Zbl 1117.35034
[48] Zheng, S.; Chipot, M., Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms, Asymptot. Anal., 45, 3-4, 301-312 (2005) · Zbl 1089.35027
[49] Ahmad, B.; Alsaedi, A.; Brezzi, F.; Marini, LD; Russo, A., Equivalent projectors for virtual element methods, Comput. Math. Appl., 66, 3, 376-391 (2013) · Zbl 1347.65172
[50] Beirão da Veiga, L.; Dassi, F.; Russo, A., High-order virtual element method on polyhedral meshes, Comput. Math. Appl., 74, 5, 1110-1122 (2017) · Zbl 1448.65215
[51] Mascotto, L., Ill-conditioning in the virtual element method: Stabilizations and bases, Numer. Meth. Partial Differ. Equ., 34, 4, 1258-1281 (2018) · Zbl 1407.65294
[52] Dassi, F.; Mascotto, L., Exploring high-order three dimensional virtual elements: bases and stabilizations, Comput. Math. Appl., 75, 9, 3379-3401 (2018) · Zbl 1409.65090
[53] Beirão da Veiga, L.; Brezzi, F.; Marini, LD; Russo, A., The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci., 24, 8, 1541-1573 (2014) · Zbl 1291.65336
[54] Beirão da Veiga, L.; Chernov, A.; Mascotto, L.; Russo, A., Basic principles of hp virtual elements on quasiuniform meshes, Math. Model Methods Appl. Sci., 26, 8, 1567-1598 (2016) · Zbl 1344.65109
[55] Lions, J.L.: Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod Paris (1969) · Zbl 0189.40603
[56] Cangiani, A.; Georgoulis, EH; Pryer, T.; Sutton, OJ, A posteriori error estimates for the virtual element method, Numer. Math., 137, 4, 857-893 (2017) · Zbl 1384.65079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.