×

A Schrödinger-Poisson system with the critical growth on the first Heisenberg group. (English) Zbl 1528.35052

J. Contemp. Math. Anal., Armen. Acad. Sci. 58, No. 3, 196-207 (2023) and Izv. Nats. Akad. Nauk Armen., Mat. 58, No. 3, 33-46 (2023).
Summary: In this paper, we study the Schrödinger-Poisson system with the critical growth on the first Heisenberg group. With the aid of the Green’s representation formula, the concentratio-compactness and the critical point theory, the existence of ground state solution.

MSC:

35J57 Boundary value problems for second-order elliptic systems
35R03 PDEs on Heisenberg groups, Lie groups, Carnot groups, etc.
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] Ambrosetti, A.; Ruiz, D., Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10, 391-404 (2008) · Zbl 1188.35171 · doi:10.1142/S021919970800282X
[3] Y.-C., An and H. Liu, “The Schrödinger-Poisson type system involving a critical nonlinearity on the first Heisenberg group, Isr. J. Math., 235, 385-411 (2020) · Zbl 1433.35442 · doi:10.1007/s11856-020-1961-8
[4] Azzollini, A.; d’Avenia, P.; Vaira, G., Generalized Schrödinger-Newton system in dimension \(N\geq 3\), J. Math. Anal. Appl., 449, 531-552 (2017) · Zbl 1373.35120 · doi:10.1016/j.jmaa.2016.12.008
[5] Azzollini, A.; d’Avenia, P., On a system involving a critically growing nonlinearity, J. Math. Anal. Appl., 387, 433-438 (2012) · Zbl 1229.35060 · doi:10.1016/j.jmaa.2011.09.012
[6] Benci, V.; Fortunato, D., An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11, 283-293 (1998) · Zbl 0926.35125 · doi:10.12775/TMNA.1998.019
[7] Benci, V.; Fortunato, D., Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations, Rev. Math. Phys., 14, 409-420 (2002) · Zbl 1037.35075 · doi:10.1142/S0129055X02001168
[8] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monographs in Mathematics (Springer, Berlin, 2007). https://doi.org/10.1007/978-3-540-71897-0 · Zbl 1128.43001
[9] Bony, J. M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, 19, 277-304 (1969) · Zbl 0176.09703 · doi:10.5802/aif.319
[10] Bordoni, S.; Pucci, P., Schrödinger-Hardy systems involving two Laplacian operators in the Heisenberg group, Bull. Sci. Math., 146, 50-88 (2018) · Zbl 1394.35531 · doi:10.1016/j.bulsci.2018.03.001
[11] Brezis, H.; Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36, 437-477 (1983) · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[12] Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., 13, 161-207 (1975) · Zbl 0312.35026 · doi:10.1007/BF02386204
[13] Garofalo, N.; Lanconelli, E., Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier, 40, 313-356 (1990) · Zbl 0694.22003 · doi:10.5802/aif.1215
[14] G. B. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Mathematical Notes, Vol. 107 (Princeton Univ. Press, Princeton, 1982). https://doi.org/10.1515/9780691222455 · Zbl 0508.42025
[15] Folland, G. B.; Stein, E., Estimates for the \(\bar{\partial}_b \), Commun. Pure Appl. Math., 27, 429-522 (1974) · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[16] S. P. Ivanov and D. N. Vassilev, Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem (World Scientific, 2011). https://doi.org/10.1142/7647 · Zbl 1228.53001
[17] Jerison, D.; Lee, J. M., Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Am. Math. Soc., 1, 1-13 (1988) · Zbl 0634.32016 · doi:10.1090/S0894-0347-1988-0924699-9
[18] Leonardi, G. P.; Masnou, S., On the isoperimetric problem in the Heisenberg group \(\mathbb{H}^n \), Ann. Mat. Pura Appl., 184, 533-553 (2005) · Zbl 1223.49051 · doi:10.1007/s10231-004-0127-3
[19] Liu, Z.; Tao, L.; Zhang, D.; Liang, S.; Song, Yu., Critical nonlocal Schrödinger-Poisson system on the Heisenberg group, Adv. Nonlinear Anal., 11, 482-502 (2022) · Zbl 1480.35182 · doi:10.1515/anona-2021-0203
[20] Loiudice, A., Critical growth problems with singular nonlinearities on Carnot groups, Nonlinear Anal. Theory Methods Appl., 126, 415-436 (2015) · Zbl 1322.35147 · doi:10.1016/j.na.2015.06.010
[21] Loiudice, A., Improved Sobolev inequalities on the Heisenberg group, Nonlinear Anal. Theory Methods Appl., 62, 953-962 (2005) · Zbl 1071.43005 · doi:10.1016/j.na.2005.04.015
[22] Loiudice, A., Semilinear subelliptic problems with critical growth on Carnot groups, Manuscripta Math., 124, 247-259 (2007) · Zbl 1146.35028 · doi:10.1007/s00229-007-0119-x
[23] Pucci, P., Existence and multiplicity results for quasilinear equations in the Heisenberg group, Opusc. Math., 39, 247-257 (2019) · Zbl 1437.35360 · doi:10.7494/OpMath.2019.39.2.247
[24] Pucci, P.; Temperini, L., Existence for \((p,q)\), Adv. Nonlinear Anal., 9, 895-922 (2019) · Zbl 1431.35017 · doi:10.1515/anona-2020-0032
[25] Pucci, P.; Temperini, L., Concentration compactness results for systems in the Heisenberg group, Opusc. Math., 40, 151-163 (2020) · Zbl 1440.35336 · doi:10.7494/OpMath.2020.40.1.151
[26] Rothschild, L. P.; Stein, E. M., Hypoelliptic differential operators and nilpotent groups, Acta Math., 137, 247-320 (1976) · Zbl 0346.35030 · doi:10.1007/BF02392419
[27] M. Willem, Functional Analysis, Cornerstones (Birkhäuser, New York, 2013). https://doi.org/10.1007/978-1-4614-7004-5 · Zbl 1284.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.