×

Ultimate bound estimation set and chaos synchronization for a financial risk system. (English) Zbl 1540.91102

Summary: In this paper, the ultimate boundary region of a financial risk system is studied through an optimization idea. For this system, the analytical expression of the ultimate boundary region is derived based on the optimization method and the Lagrange multiplier method. The ultimate bound which is useful in chaos synchronization is demonstrated through numerical simulations. Utilizing the bound obtained, a linear controller is proposed to achieve the chaos synchronization. All the numerical simulation results are in line with the theoretical analysis.

MSC:

91G80 Financial applications of other theories
34D06 Synchronization of solutions to ordinary differential equations
37N40 Dynamical systems in optimization and economics
Full Text: DOI

References:

[1] Agrawal, S. K.; Srivastava, M.; Das, S., Synchronization of fractional order chaotic systems using active control method, Chaos Solitons Fractals, 45-6, 737-752 (2012)
[2] Burlando, T., Chaos and risk management, Risk Manage., 41-4, 54-61 (1994)
[3] Chen, W. C., Nonlinear dynamics and chaos in a fractional-order financial system, Chaos Solitons Fractals, 36-5, 1305-1314 (2008)
[4] David, S. A.; Machado, J. A.T.; Quintino, D. D.; Balthazar, J. M., Partial chaos suppression in a fractional order macroeconomic model, Math. Comput. Simulation, 122, 55-68 (2016) · Zbl 1540.91041
[5] Grandmont, J. M., Nonlinear Economic Dynamics (1988), Academic Press: Academic Press NY
[6] Huang, T.; Li, C., Chaotic synchronization by the intermittent feedback method, J. Comput. Appl. Math., 234-4, 1097-1104 (2011) · Zbl 1195.65212
[7] Kikochi, T.; Vachadze, G., Financial liberalization: Poverty trap or chaos, J. Math. Econom., 59, 1-9 (2015) · Zbl 1319.91115
[8] Lee, T. H.; Ji, D. H.; Park, J. H.; Jung, H. Y., Decentralized guaranteed cost dynamic control for synchronization of a complex dynamical network with randomly switching topology, Appl. Math. Comput., 219, 996-1010 (2012) · Zbl 1286.93088
[9] Leonov, G. A., Bound for attractors and the existence of homoclinic orbit in the Lorenz system, J. Appl. Math. Mech., 65, 19-32 (2001) · Zbl 1025.34048
[10] Leonov, G., Lyapunov dimension formulas for Henon and Lorenz attractors, St. Petersburg Math. J., 13, 1-12 (2001)
[11] Leonov, G., Lyapunov functions in the attractors dimension theory, J. Appl. Math. Mech., 76, 129-141 (2012) · Zbl 1272.34074
[12] Leonov, G.; Bunin, A.; Koksch, N., Attractor localization of the Lorenz system, ZAMM Z. Angew. Math. Mech., 67, 649-656 (1987) · Zbl 0653.34040
[13] Li, D.; Lu, J. A.; Wu, X.; Chen, G., Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals, 23, 529-534 (2005) · Zbl 1061.93506
[14] Li, D.; Wu, X.; Lu, J., Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz-Haken system, Chaos Solitons Fractals, 39, 1290-1296 (2009) · Zbl 1197.37034
[15] Liao, X., On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China, Ser. E Inform. Sci., 34, 404-419 (2004)
[16] Lorenz, E. N., Deterministic non-periods flows, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129
[17] Mahmoud, E. E., Modified projective phase synchronization of chaotic complex nonlinear systems, Math. Comput. Simulation, 89, 69-85 (2013) · Zbl 1490.93054
[18] Medio, A., Chaotic Dynamics, Theory and Applications to Economics (1992), University Press: University Press Cambridge · Zbl 0783.58002
[19] Orlando, G., A discrete mathematical model for chaotic dynamics in economics: Kaldor’s model on business cycle, Math. Comput. Simulation, 125, 83-98 (2016) · Zbl 1540.91048
[20] Qi, G. Y.; Chen, G. R.; Du, S. Z., Analysis of a new chaotic system, Physica A, 352, 2-4, 295-308 (2005)
[21] Quan, Q.; Cai, K. Y., A new method to obtain ultimate bounds and convergence rates for perturbed time-delay systems, Int. J. Robust Nonlinear Control, 22, 1873-1880 (2012) · Zbl 1273.93144
[22] Saberi Nik, H.; Effati, S.; Saberi-Nadjafi, J., New ultimate bound sets and exponential finite-time synchronization for the complex Lorenz system, J. Complexity, 31-5, 715-730 (2015) · Zbl 1330.34105
[23] Saberi Nik, H.; Effati, S.; Saberi-Nadjafi, J., Ultimate bound sets of a hyperchaotic system and its application in chaos Synchronization, Complexity, 20-4, 30-44 (2015) · Zbl 1330.34105
[24] Seron, M. M.; De Dona, J. A.; Richter, J. H., Invariant-set-based fault diagnosis in Lure systems, Int. J. Robust Nonlinear Control (2013)
[25] Starkov, K. E.; Gamboa, D., Localization of compact invariant sets and global stability in analysis of one tumor growth model, Math. Methods Appl. Sci., 37-18, 2854-2863 (2013) · Zbl 1309.34085
[26] Torres, L.; Besano̧n, G.; Georges, D.; Verde, C., Exponential nonlinear observer for parametric identification and synchronization of chaotic systems, Math. Comput. Simulation, 82-5, 836-846 (2012) · Zbl 1242.65277
[27] Tramontana, F.; Westerhoff, F.; Gardini, L., Replicating financial market dynamics with a simple self-organized critical lattice model, Math. Comput. Simulation, 108, 16-40 (2015) · Zbl 1540.91065
[28] Villena, M. J.; Araneda, A. A., Dynamics and stability in retail competition, Math. Comput. Simulation, 134, 37-53 (2017) · Zbl 1540.91038
[29] Wan, L.; Zhou, Q. H., Attractor and ultimate boundedness for stochastic cellular neural networks with delays, Nonlinear Anal.-Real, 12, 2561-2566 (2011) · Zbl 1225.34091
[30] Wang, Z.; Huang, X.; Shi, G., Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay, Comput. Math. Appl., 62, 1531-1539 (2011) · Zbl 1228.35253
[31] Wang, P.; Li, D.; Hu, Q., Bounds of the hyper-chaotic Lorenz-Stenflo system, Commun. Nonlinear Sci. Numer. Simul., 15, 2514-2520 (2010) · Zbl 1222.37036
[32] Wang, P.; Li, D.; Wu, X.; Lü, J.; Yu, X., Ultimate bound estimation of a class of high dimensional quadratic autonomous dynamical systems, Int. J. Bifurcation Chaos, 21-9, 1-9 (2011)
[33] Wang, P.; Zhang, Y.; Tan, S.; Wan, L., Explicit ultimate bound sets of a new hyper-chaotic system and its application in estimating the Hausdorff dimension, Nonlinear Dynam., 74, 1-2, 133-142 (2013) · Zbl 1281.34076
[34] Xiao-Dan, Z.; Xiang-Dong, L.; Yuan, Z.; Cheng, L., Chaotic dynamic behavior analysis and control for a financial risk system, Chin. Phys. B, 22-3, Article 030509 pp. (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.