×

Boundedness of completely additive measures with application to 2-local triple derivations. (English) Zbl 1337.81014

In quantum measure theory, a measure on the projection lattice of a von Neumann algebra – and the corresponding closed subspaces of an Hilbert space – is assumed to be additive with respect to mutually orthogonal subspaces. The states of a quantum physical system, on the other hand, are associated to probability measures on this projection lattice, and a natural example of a probability measure on projections is the restriction of a normal positive linear functional on the von Neumann algebra \(B(H)\) of the bounded operators acting on a Hilbert space \(H\). Whether or not, all probability measures are of this very form was one of the basic questions of mathematical foundations of quantum mechanics, and in this context the celebrated A. M. Gleason Theorem [J. Math. Mech. 6, 885–893 (1957; Zbl 0078.28803)] states that every bounded completely additive complex measure on the lattice of the projections acting on a Hilbert space \(H\) of dimension no lesser than 3 extends to a normal functional on the von Neumann algebra \(B(H)\). Since any normal functional on a von Neumann algebra can be represented by a trace class operator, the Gleason Theorem gives a characterization of any bounded completely additive measure on the projection lattice by means of a trace class operator: this version of the theorem is well known to the physicists, and the trace class operator is usually called the density matrix of the physical state.
The Gleason Theorem has many physically relevant consequences. One of its most famous applications is the proof of nonexistence of dispersion-free state on the Hilbert space logic, and consequently that a Hilbert space model cannot be completed to a classical model by considering suitable auxiliary hidden variables without violating its inner structure. A completely additive measure, however, may be unbounded and hence not extendable into a bounded linear functional; it is remarkable then – in view of the stated relevance of the Gleason type theorems – that complete additivity and boundedness may differ only in a finite dimensional case: S. Dorofeev [J. Funct. Anal. 103, No. 1, 209–216 (1992; Zbl 0759.46056)] and A. N. Sherstnev [Methods of bilinear forms in non-commutative measure and integral theory (Russian). Moskva: Fizmatlit (2008; Zbl 1198.46002)] proved indeed that any completely additive measure on projections in an infinite-dimensional Hilbert space is automatically bounded: this indeed allows one to relax the assumption on the boundedness of measure in the Gleason Theorem and opens the way to extend it. As a consequence we can say that any completely additive measure on the projection lattice of the algebra \(B(H)\) of all bounded operators on an infinite-dimensional Hilbert space \(H\) extends uniquely to a normal functional on \(B(H)\).
In the paper under review – which is completely in the mainstream of the previously outlined research field – the authors first of all establish a Jordan version of Dorofeev’s boundedness result (Theorem 3.1; the long Section III is essentially devoted to its extensive and elaborated proof) stating the boundedness of every completely additive (complex) measure \(\Delta : {\mathcal P}(H(M, \beta))\to {\mathbb C}\) defined on the projection lattice of a suitable \(JBW^\ast\)-algebra \(H(M, \beta)\) which happens to be a Jordan \(^\ast\)-subalgebra of a von Neumann algebra \(M\), while \(\beta:M\to M\) is a \(\mathbb C\)-linear \(^\ast\)-involution. It is instead still an admittedly open problem whether this result remains valid when \(H(M, \beta)\) is replaced by an arbitrary \(JBW^\ast\)-algebra. The second main result (Theorem 4.7) then pertains to the triple derivations on \(JBW^\ast\)-triples, and, in particular, it states that a 2-local triple derivation on a continuous \(JBW^\ast\)-triple always is a linear and continuous triple derivation.
The paper is eminently technical and looks intended mainly for the sector pundits; that notwithstanding, the authors make a commendable effort to preliminarily define in the Section I all the notions and notations that they will use in what follows so that the interested people can undoubtedly delve into their arguments.

MSC:

81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
81P16 Quantum state spaces, operational and probabilistic concepts
17C65 Jordan structures on Banach spaces and algebras
46L10 General theory of von Neumann algebras

References:

[1] Ayupov, S., A new proof of the existence of traces on Jordan operator algebras and real von Neumann algebras, J. Funct. Anal., 84, 2, 312-321 (1989) · Zbl 0684.46055 · doi:10.1016/0022-1236(89)90100-6
[2] Ayupov, S.; Kudaybergenov, K., 2-local derivations on von Neumann algebras, Positivity, 19, 3, 445-455 (2015) · Zbl 1344.46046 · doi:10.1007/s11117-014-0307-3
[3] Ayupov, S.; Kudaybergenov, K., Derivations, local, and 2-local derivations on algebras of measurable operators, Contem. Math. · Zbl 1365.46058
[4] Ayupov, S.; Kudaybergenov, K.; Peralta, A. M., A survey on local and 2-local derivations on C*-algebras and von Neumann algebras, Contem. Math. · Zbl 1365.46059
[5] Ayupov, S.; Rakhimov, A.; Usmanov, S., Jordan, Real and Lie Structures in Operator Algebras (1997) · Zbl 0908.17022
[6] Bohata, M., Hamhalter, J., and Kalenda, O. F. K., “Decompositions of preduals of JBW and \(JBW^∗\)-algebras,” e-print (2015). · Zbl 1360.46012
[7] Bunce, L. J., Norm preserving extensions in JBW*-triple preduals, Q. J. Math., 52, 2, 133-136 (2001) · Zbl 0985.46041 · doi:10.1093/qjmath/52.2.133
[8] Bunce, L. J.; Wright, J. D. M., The Mackey-Gleason problem, Bull. Am. Math. Soc., 26, 288-293 (1992) · Zbl 0759.46054 · doi:10.1090/S0273-0979-1992-00274-4
[9] Bunce, L. J.; Wright, J. D. M., The Mackey-Gleason problem for vector measures on projections in von Neumann algebras, J. London Math. Soc., 49, 133-149 (1994) · Zbl 0796.46045 · doi:10.1112/jlms/49.1.133
[10] Burgos, M.; Fernández-Polo, F. J.; Garcés, J. J.; Peralta, A. M., A Kowalski-Slodkowski theorem for 2-local ∗-homomorphisms on von Neumann algebras, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Math., 109, 2, 551-568 (2015) · Zbl 1321.46065 · doi:10.1007/s13398-014-0200-8
[11] Burgos, M.; Fernández-Polo, F. J.; Garcés, J. J.; Peralta, A. M., 2-local triple homomorphisms on von Neumann algebras and \(JBW^∗\)-triples, J. Math. Anal. Appl., 426, 43-63 (2015) · Zbl 1322.46045 · doi:10.1016/j.jmaa.2014.12.058
[12] Burgos, M.; Fernández-Polo, F. J.; Peralta, A. M., Local triple derivations on C*-algebras and JB*-triples, Bull. London Math. Soc., 46, 4, 709-724 (2014) · Zbl 1312.47050 · doi:10.1112/blms/bdu024
[13] Chu, C.-H., Jordan Structures in Geometry and Analysis, 190 (2012) · Zbl 1238.17001
[14] Cooney, T.; Junge, M.; Navascués, M.; Pérez-García, D.; Villanueva, I., Joint system quantum descriptions arising from local quantumness, Commun. Math. Phys., 322, 2, 501-513 (2013) · Zbl 1270.81006 · doi:10.1007/s00220-013-1696-z
[15] Dorofeev, S., On the problem of boundedness of a signed measure on projections of a von Neumann algebra, J. Funct. Anal., 103, 209-216 (1992) · Zbl 0759.46056 · doi:10.1016/0022-1236(92)90142-6
[16] Dvurecenskij, A., Gleason’s Theorem and Its Applications, 60 (1993) · Zbl 0795.46045
[17] Edwards, C. M.; Rüttimann, G. T., Exposed faces of the unit ball in a \(JBW^∗\)-triple, Math. Scand., 82, 2, 287-304 (1998) · Zbl 0921.46075
[18] Edwards, C. M.; Rüttimann, G. T., Gleason’s theorem for rectangular \(JBW^∗\)-triples, Commun. Math. Phys., 203, 2, 269-295 (1999) · Zbl 0935.46059 · doi:10.1007/s002200050612
[19] Gleason, A. M., Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6, 885-893 (1957) · Zbl 0078.28803 · doi:10.1512/iumj.1957.6.56050
[20] Hamhalter, J., Quantum Measure Theory (2003) · Zbl 1038.81003
[21] Hanche-Olsen, H.; Størmer, E., Jordan Operator Algebras, 21 (1984) · Zbl 0561.46031
[22] Ho, T.; Martínez-Moreno, J.; Peralta, A. M.; Russo, B., Derivations on real and complex \(JB^*\)-triples, J. London Math. Soc., 65, 1, 85-102 (2002) · Zbl 1015.46041 · doi:10.1112/S002461070100271X
[23] Horn, G., Classification of \(JBW^∗\)-triples of type I, Math. Z., 196, 2, 271-291 (1987) · Zbl 0615.46045 · doi:10.1007/BF01163661
[24] Horn, G.; Neher, E., Classification of continuous \(JBW^*\)-triples, Trans. Am. Math. Soc., 306, 553-578 (1988) · Zbl 0659.46063 · doi:10.1090/s0002-9947-1988-0933306-7
[25] Johnson, B. E., Local derivations on \(C^∗\)-algebras are derivations, Trans. Am. Math. Soc., 353, 313-325 (2001) · Zbl 0971.46043 · doi:10.1090/S0002-9947-00-02688-X
[26] Kadison, R. V., Local derivations, J. Algebra, 130, 494-509 (1990) · Zbl 0751.46041 · doi:10.1016/0021-8693(90)90095-6
[27] Kadison, R. V.; Ringrose, J., Fundamentals of the Theory of Operator Algebras, II (1986) · Zbl 0601.46054
[28] Kadison, R. V.; Ringrose, J., Fundamentals of the Theory of Operator Algebras, IV (1992) · Zbl 0869.46029
[29] Kaup, W., A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z., 183, 4, 503-529 (1983) · Zbl 0519.32024 · doi:10.1007/BF01173928
[30] Kudaybergenov, K.; Oikhberg, T.; Peralta, A. M.; Russo, B., 2-local triple derivations on von Neumann algebras, Illinois J. Math., 58, 4, 1055-1069 (2014) · Zbl 1332.46055
[31] Larson, D. R.; Sourour, A. R., Local derivations and local automorphisms of B(X), Proceedings of Symposia in Pure Mathematics, 51, 187-194 (1990) · Zbl 0713.47045 · doi:10.1090/pspum/051.2/1077437
[32] Mackey, M., Local derivations on Jordan triples, Bull. London Math. Soc., 45, 4, 811-824 (2013) · Zbl 1294.17025 · doi:10.1112/blms/bdt007
[33] 33.Matveĭchuk, M. S., “Linearity of a charge on a lattice of orthoprojectors,” Izv. Vyssh. Uchebn. Zaved. Mat. (9), 48-66 (1995) (in Russian)[Matveĭchuk, M. S., Math. (Iz. VUZ)39(9), 46-64 (1995)]. · Zbl 0870.46040
[34] Molnár, L., Local automorphisms of some quantum mechanical structures, Lett. Math. Phys., 58, 2, 91-100 (2001) · Zbl 1002.46044 · doi:10.1023/A:1013397207134
[35] Rudolph, O.; Wright, J. D. M., On unentangled Gleason theorems for quantum information theory, Lett. Math. Phys., 52, 3, 239-245 (2000) · Zbl 1072.81517 · doi:10.1023/A:1007696209271
[36] Šemrl, P., Local automorphisms and derivations on B(H), Proc. Am. Math. Soc., 125, 2677-2680 (1997) · Zbl 0887.47030 · doi:10.1090/S0002-9939-97-04073-2
[37] Sherstnev, A. N., Methods of Bilinear Forms in Noncommutative Theory of Measure and Integral, 256 (2008) · Zbl 1198.46002
[38] Takesaki, M., Theory of Operator Algebras I (1979) · Zbl 0990.46034
[39] Topping, D. M., Jordan algebras of self-adjoint operators, Mem. Am. Math. Soc., 53 · Zbl 0137.10203
[40] Upmeier, H., Derivations of Jordan \(C^∗\)-algebras, Math. Scand., 46, 251-264 (1980) · Zbl 0454.46046
[41] Wright, J. D. M., Decoherence functionals for von Neumann quantum histories: Boundedness and countable additivity, Commun. Math. Phys., 191, 3, 493-500 (1998) · Zbl 0911.46037 · doi:10.1007/s002200050275
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.