×

On the \(p\)-pseudoharmonic map heat flow. (English) Zbl 1457.32092

Summary: In this paper, we consider the heat flow for \(p\)-pseudoharmonic maps from a closed Sasakian manifold \((M^{2n+1},J,\theta)\) into a compact Riemannian manifold \((N^m,g_{ij})\). We prove global existence and asymptotic convergence of the solution for the \(p\)-pseudoharmonic map heat flow, provided that the sectional curvature of the target manifold \(N\) is non-positive. Moreover, without the curvature assumption on the target manifold, we obtain global existence and asymptotic convergence of the \(p\)-pseudoharmonic map heat flow as well when its initial \(p\)-energy is sufficiently small.

MSC:

32V05 CR structures, CR operators, and generalizations
32V20 Analysis on CR manifolds
53C56 Other complex differential geometry

References:

[1] Barletta, E., Dragomir, S. and Urakawa, H., Pseudoharmonic maps from nondegenerate CR manifolds to Riemannian manifolds, IUMJ50 (2001) 719-746. · Zbl 1033.32022
[2] Chang, S.-C. and Chang, T.-H., On the existence of pseudoharmonic maps form pseudohermtian manifolds into Riemannian manifolds with nonpositive sectional curavature, Asian J. Math.17 (2013) 1-16. · Zbl 1304.32024
[3] Chang, S.-C. and Chang, T.-H., Finite-time blow up for the heat flow of pseudoharmonic maps, Indiana Univ. Math. J.64 (2015) 441-470. · Zbl 1319.32027
[4] S.-C. Chang, C.-W. Chen and C.-T. Wu, On the CR Analogue of Reilly Formula and Yau Eigenvalue Conjecture, arXiv:1503.07639. · Zbl 1402.32037
[5] Chen, Y. and Ding, W.-Y., Blow-up and global existence for heat flows of harmonic maps, Invent. Math.99 (1990) 567-578. · Zbl 0674.58019
[6] T. Chong, Y. Dong, Y. Ren and G. Yang, On Harmonic and Pseudoharmonic Maps from Strictly Pseudoconvex CR Manifolds, arXiv:1505.02170v1.
[7] Choe, H. J., Hőlder regularity for the gradients of solutions of certain parabolic equations, Comm. Partial Diff. Equ.16 (1991) 1709-1732. · Zbl 0778.35016
[8] Chen, Y., Hong, M.-C. and Hungerbuhler, N., Heat flow of \(p\)-harmonic maps with values into spheres, Math. Z.215 (1994) 25-35. · Zbl 0793.53049
[9] Chen, Y. and Struwe, M., Existence and partial regularity results for the heat flow for harmonic maps, Math. Z.201 (1989) 83-103. · Zbl 0652.58024
[10] Dibenedetto, E., Degenerate Parabolic Equations, (Springer, Berlin, 1993). · Zbl 0794.35090
[11] Dibenedetto, E. and Friedman, A., Hőlder estimates for nonlinear degenerate parabolic systems, J. Reine. Angew. Math.357 (1984) 1-22. · Zbl 0549.35061
[12] Dragomir, S. and Tomassini, G., Differential Geometry and Analysis on CR Manifolds, , Vol. 246 (Birkhauser Boston Inc., Boston, MA, 2006), xvi+487 pp. · Zbl 1099.32008
[13] Eells, J. and Sampson, J. H., Harmonic mappings of Riemannian manifolds, Amz. J. Math.86 (1964) 109-160. · Zbl 0122.40102
[14] Dong, Y., Lu, G. and Sun, L., Global poincare inequalities on the Heisenberg group and applications, Acta Math. Sinica English Ser. Apr.23(4) (2007) 735-744. · Zbl 1131.46024
[15] Folland, G. B., Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv for Matematik13(1-2) (1975) 161-207. · Zbl 0312.35026
[16] Fardoun, A. and Regbaoui, R., Heat flow for \(p\)-harmonic maps between compact Riemannian manifolds, Indiana Univ. Math. J.51(6) (2002) 1305-1320. · Zbl 1034.58014
[17] Fardoun, A. and Regbaoui, R., Heat flow for \(p\)-harmonic maps with small intial data, Calc. Var.16 (2003) 1-16. · Zbl 1034.58013
[18] Folland, G. B. and Stein, E. M., Estimates for the \(\overline{\partial}_b\) complex and analysis on the Heisenberg group, Comm. Pure Appl. Math.27 (1974) 429-522. · Zbl 0293.35012
[19] Greenleaf, A., The first eigenvalue of a sublaplacian on a pseudohermitian manifold, Comm. Partial Diff. Equ.10(2) (1985) 191-217. · Zbl 0563.58034
[20] Gordon, W. B., Convex functions and harmonic maps, Proc. Am. Math. Soc.33 (1972) 433-437. · Zbl 0234.49030
[21] Hungerbuhler, N., Global weak solutions of the \(p\)-harmonic flow into homogeneous space, Indiana Univ. Math. J.45(1) (1996) 275-288. · Zbl 0857.35053
[22] Hungerbuhler, N., \(m\)-Harmonic flow, Ann. Sc. Norm. Super. Pisa IV. Ser.24(4) (1997) 593-631. · Zbl 0911.58011
[23] Hardt, R. and Lin, H.-F., Mappings minimizing the \(L^p\)-Norm of the Gradient, Commun. Pure Appl. Math.XL (1987) 555-588. · Zbl 0646.49007
[24] Hájlasz, P. and Strzelecki, P., Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces, Math. Ann.312 (1998) 341-362. · Zbl 0914.35029
[25] Jerison, D., The Poincare inequality for vector fields satisfying Hőrmander’s condition, Duke Math. J.53 (1986) 503-523. · Zbl 0614.35066
[26] Jerison, D. and Lee, J. M., The Yamabe problem on CR manifolds, J. Differential Geom.25(2) (1987) 167-197. · Zbl 0661.32026
[27] B. Kim, Poincaré inequality and the uniqueness of solutions for the heat equation associated with subelliptic diffusion operators, arXiv:1305.0508.
[28] Lee, J. M., Pseudo-Einstein structure on \(CR\) manifolds, Am. J. Math.110 (1988) 157-178. · Zbl 0638.32019
[29] Ladyzenskaya, O. A., Solonnikov, V. A. and Ural’ceva, N. N., Linear and Quasilinear Equations of Parabolic Type (AMS, Providence R.I., 1968). · Zbl 0174.15403
[30] Lu, G., Weighted Poincare and Sobolev inequalities for vector fields satisfying Hőrmander’s condition and applications, Revista Mat. Iberoamericana8 (1992) 367-439. · Zbl 0804.35015
[31] Moser, J., A Harnack Inequality for parabolic differential equations, Commun. Pure Appl. Math.17 (1964) 101-134. · Zbl 0149.06902
[32] Xu, C.-J. and Zuily, C., Higher interior regularity for quasilinear subelliptic systems, Calc. Var. Partial Diff. Equ.5 (1997) 323-343. · Zbl 0902.35019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.