×

A two-level elasto-viscoplastic model: application to the analysis of the crystal anisotropy influence. (English. Russian original) Zbl 1494.74008

J. Appl. Mech. Tech. Phys. 62, No. 7, 1145-1155 (2021); translation from Vychisl. Mekh. Splosh. Sred 13, No. 1, 219-230 (2020).
Summary: Multilevel (mainly two-level) crystal plasticity models have been widely used for studying processes of inelastic deformation of polycrystalline materials over the last 15–20 years. Anisotropy of plastic strain in crystallites is usually taken into account at the mesoscale, while their elastic properties are often considered as isotropic. The purpose of this study is to assess the differences in the stress-strain characteristics (especially residual mesoscopic stress) by taking into account the anisotropy of elastic properties of materials calculated for the isothermal deformation of polycrystals with various types of crystallite lattice symmetry within a representative macroscopic volume. To this end, our results are compared with the data obtained for a material with isotropic elastic properties using the Voigt-Reuss-Hill averaging procedures. The results of the analysis for the stress-strain state of polycrystalline samples with fcc, bcc, and hcp lattices obtained in a simple shear test (up to the accumulated strain of 50%) are presented. The statistical two-level constitutive model, constructed within the geometrically nonlinear elasto-viscoplasticity theory, is used for calculations. In such constitutive models, the main fundamental relation is the law of elasticity written in the rate relaxation form in terms of the measures of the stress and strain rates, being independent of the chosen reference frame (or of the superimposed rigid motion). It is shown that the analysis of the anisotropy effect has a noticeable impact on the characteristic macroscopic volume stress-strain state only in the initial deformation stage. Subsequently, for deformations exceeding 1–1.5%, the difference becomes insignificant. At the same time, the results of calculating the residual mesoscopic stress (i.e., the stress after unloading the representative macroscopic volume), which has a significant effect on the strength characteristics of materials, with allowance for the crystal anisotropy turned out to be significantly different from those obtained under the hypothesis of isotropy.

MSC:

74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74E15 Crystalline structure
74E10 Anisotropy in solid mechanics
Full Text: DOI

References:

[1] Panin, V. E., Fizicheskaya mezomekhanika i komp’yuternoe konstruirovanie materialov (Physical Mesomechanics and Computer-Aided Design of Materials) (1995), Novosibirsk: Nauka, Novosibirsk
[2] Panin, V. E., Physical foundations of mesomechanics of a medium with a structure, Russ. Phys. J., 35, 305-315 (1992) · doi:10.1007/BF00560066
[3] Trusov, P.V. and Shveykin, A.I., Mnogourovnevye modeli mono- i polikristallicheskikh materialov: teoriya, algoritmy, primery primeneniya (Multilevel Models of Mono- and Polycrystalline Materials: Theory, Algorithms, Application Examples), Novosibirsk: Sib. Otdel. Akad. Nauk, 2019. doi:10.15372/MULTILEVEL2019TPV
[4] McDowell, D. L., A perspective on trends in multiscale plasticity, Int. J. Plast., 26, 1280-1309 (2010) · Zbl 1402.74022 · doi:10.1016/j.ijplas.2010.02.008
[5] Horstemeyer, M.F., Multiscale modeling: A review, in Practical Aspects of Computational Chemistry, Leszczynski, J. and Shukla, M.K., Eds., Netherlands: Springer, 2009, pp. 87-135. doi:10.1007/978-90-481-2687-3_4
[6] Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D. D.; Bieler, T. R.; Raabe, D., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Mater., 58, 1152-1211 (2010) · doi:10.1016/j.actamat.2009.10.058
[7] Trusov, P.V. and Shveykin, A.I., Teoriya plastichnosti (Plasticity Theory), Perm: Perm. Gos. Tekhn. Univ., 2011.
[8] Trusov, P. V.; Shveykin, A. I., Multilevel crystal plasticity models of single- and polycrystals. Statistical models, Phys. Mesomech., 16, 23-33 (2013) · doi:10.1134/S1029959913010037
[9] Trusov, P. V.; Shveykin, A. I., Multilevel crystal plasticity models of single- and polycrystals. Direct models, Phys. Mesomech., 16, 99-124 (2013) · doi:10.1134/S1029959913020021
[10] Kroner, E., Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Rational Mech. Anal., 4, 273-334 (1959) · Zbl 0090.17601 · doi:10.1007/BF00281393
[11] Lee, E. H.; Liu, D. T., Finite-strain elastic-plastic theory with application to plane-wave analysis, J. Appl. Phys., 38, 19-27 (1967) · doi:10.1063/1.1708953
[12] Lee, E. H., Elastic-plastic deformation at finite strain, J. Appl. Mech., 36, 1-6 (1969) · Zbl 0179.55603 · doi:10.1115/1.3564580
[13] Green, A. E.; Adkins, J. E., Large Elastic Deformations and Non-Linear Continuum Mechanics (1960), Oxford: Clarendon, Oxford · Zbl 0090.17501
[14] Trusov, P.V., Kondratev, N.S., and Shveikin, A.I., About geometricaly nonlinear constitutive relations for elastic material, Vestn. PNIPU, Mekh., 2015, no. 3, pp. 182-200. doi:10.15593/perm.mech/2015.3.13
[15] Taylor, G. I., Plastic strain in metals, J. Inst. Met., 62, 307-324 (1938)
[16] Lin, T. H., Analysis of elastic and plastic strains of a face-centered cubic crystal, J. Mech. Phys. Solid., 5, 143-149 (1957) · Zbl 0077.23604 · doi:10.1016/0022-5096(57)90058-3
[17] Truesdell, C. A., Hypo-elasticity, J. Ration. Mech. Anal., 4, 83-133 (1955) · Zbl 0064.42002
[18] Truesdell, C., The simplest rate theory of pure elasticity, Commun. Pure Appl. Math., 8, 123-132 (1955) · Zbl 0064.42003 · doi:10.1002/cpa.3160080109
[19] Truesdell, C., Hypo-elastic shear, J. Appl. Phys., 27, 441-447 (1956) · doi:10.1063/1.1722399
[20] Xiao, H.; Bruhns, O. T.; Meyers, A., Hypo-elasticity model based upon the logarithmic stress rate, J. Elasticity, 47, 51-68 (1997) · Zbl 0888.73011 · doi:10.1023/A:1007356925912
[21] Xiao, H.; Bruhns, O. T.; Meyers, A., Objective corotational rates and unified work-conjugacy relation between Eulerian and Lagrangean strain and stress measures, Arch. Mech., 50, 1015-1045 (1988) · Zbl 0965.74010
[22] Xiao, H.; Bruhns, O. T.; Meyers, A., The choice of objective rates in finite elastoplasticity: general results on the uniqueness of the logarithmic rate, Proc. R. Soc. London, Ser. A, 456, 1865-1882 (2000) · Zbl 1046.74010 · doi:10.1098/rspa.2000.0591
[23] Xiao, H.; Bruhns, O. T.; Meyers, A., Objective stress rates, path-dependence properties and non-integrability problems, Acta Mech., 176, 135-151 (2005) · Zbl 1071.74002 · doi:10.1007/s00707-005-0218-2
[24] Hill, R., Constitutive inequalitites for isotropic elastic solids under finite strain, Proc. R. Soc. London, Ser. A, 314, 457-472 (1970) · Zbl 0201.26601 · doi:10.1098/rspa.1970.0018
[25] Seth, B.R., Generalized strain and transition concepts for elastic-plastic deformation-creep and relaxation, in Applied Mechanics, Görtler, H., Ed., Berlin: Springer, 1966, pp. 383-389. doi:10.1007/978-3-662-29364-5_51
[26] Lurie, A. I., Nonlinear Theory of Elasticity (1990), Amsterdam: Elsevier, Amsterdam · Zbl 0715.73017
[27] Lehmann, T., Anisotrope plastische Formänderungen, Rheol. Acta, 3, 281-285 (1964) · Zbl 0145.45401 · doi:10.1007/BF02096162
[28] Dienes, J. K., On the analysis of rotation and stress rate in deforming bodies, Acta Mech., 32, 217-232 (1979) · Zbl 0414.73005 · doi:10.1007/BF01379008
[29] Pozdeev, A.A., Trusov, P.V., and Nyashin, Yu.I., Bol’shie uprugoplasticheskie deformatsii: teoriya, algoritmy, prilozheniya (Lagre Elastic-Plastic Deformations: Theory, Algorithms, Applications), Moscow: Nauka, 1986. · Zbl 0615.73051
[30] Trusov, P. V.; Shveykin, A. I.; Yanz, A. Yu., Motion decomposition, frame-indifferent derivatives, and constitutive relations at large displacement gradients from the viewpoint of multilevel modeling, Phys. Mesomech., 20, 357-376 (2017) · doi:10.1134/S1029959917040014
[31] Trusov, P. V.; Shveykin, A. I., On motion decomposition and constitutive relations in geometrically nonlinear elastoviscoplasticity of crystallites, Phys. Mesomech., 19, 377-391 (2016) · doi:10.1134/S1029959917040026
[32] Krivosheina, M. N.; Tuch, E. V.; Khon, Yu. A., Applying the Mises-Hill criterion to modeling the dynamic loading of highly anisotropic materials, Bull. Russ. Acad. Sci.: Phys., 76, 80-84 (2012) · Zbl 1253.74003 · doi:10.3103/S1062873812010169
[33] Newnham, R. E., Properties of Materials. Anisotropy, Symmetry, Structure (2005), Oxford: Oxford Univ. Press, Oxford
[34] Shermergor, T.D., Teoriya uprugosti mikroneodnorodnykh tel (The Theory of Elasticity of Micro-Inhomogeneous Bodies), Moscow: Nauka, 1977.
[35] Birger, I.A., Ostatochnye napryazheniya (Residual Stresses), Moscow: Mashgiz, 1963.
[36] Fridman, Ya.B., Mekhanicheskie svoistva metallov. Ch. 1. Deformatsiya i razrushenie (Mechanical Properties of Metals. Part 1. Deformation and Destruction), Moscow: Mashinostroenie, 1974.
[37] Pozdeev, A.A., Nyashin, Yu.I., and Trusov, P.V., Ostatochnye napryazheniya: teoriya i prilozheniya (Residual Stresses: Theory and Applications), Moscow: Nauka, 1974.
[38] Radchenko, V.P. and Saushkin, M.N., Polzuchest’ i relaksatsiya ostatochnykh napryazhenii v uprochnennykh konstruktsiyakh (Creep and Relaxation of Residual Stresses in Reinforced Structures), Moscow: Mashinostroenie, 2005.
[39] Kachanov, L.M., Osnovy mekhaniki razrusheniya (Fundamentals of Fracture Mechanics), Moscow: Nauka, 1974.
[40] Collins, J. A., Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention (1981), New York: Wiley, New York
[41] Rabotnov, Yu.N., Vvedenie v mekhaniku razrusheniya (Introduction to Fracture Mechanics), Moscow: Nauka, 1987. · Zbl 0634.73100
[42] Besson, J., Continuum models of ductile fracture: A review, Int. J. Damage Mech., 19, 3-52 (2010) · doi:10.1177/1056789509103482
[43] Volegov, P. S.; Gribov, D. S.; Trusov, P. V., Damage and fracture: Review of experimental studies, Phys. Mesomech., 19, 319-331 (2016) · doi:10.1134/S1029959916030103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.