×

Dynamics of the smooth positons of the complex modified KdV equation. (English) Zbl 07583349


MSC:

74-XX Mechanics of deformable solids
78-XX Optics, electromagnetic theory
Full Text: DOI

References:

[1] Matveev, VB, Generalized Wronskian formula for solutions of the KdV equations: first applications, Phys Lett A, 166, 205-208 (1992)
[2] Matveev, VB, Positon-positon and soliton-positon collisions: KdV case, Phys Lett A, 166, 209-212 (1992)
[3] Beutler, R., Positon solutions of the sine-Gordon equation, J Math Phys, 34, 3098-3103 (1993) · Zbl 0777.35070
[4] Stahlhofen, AA, Positons of the modified Korteweg de Vries equation, Ann Phys Berlin, 1, 554-569 (1992) · Zbl 0771.35064
[5] Maisch, H.; Stahlhofen, AA, Dynamic properties of positons, Phys Scr, 52, 228-236 (1995)
[6] Stahlhofen, AA; Matveev, VB, Positons for the Toda lattice and related spectral problems, J Phys A Math Gen, 28, 1957-1965 (1995) · Zbl 0843.58071
[7] Beutler, R.; Stahlhofen, A.; Matveev, VB, What do solitons, breathers and positons have in common?, Phys Scr, 50, 9-20 (1994)
[8] Matveev, VB, Positons: slowly decreasing analogues of solitons, Theor Math Phys, 131, 483-497 (2002) · Zbl 1029.37051
[9] Chow, KW; Lai, WC; Shek, CK, Positon-like solutions of nonlinear evolution equations in (2+1) dimensions, Chaos Solitons Fractals, 9, 1901-1912 (1998) · Zbl 0934.35152
[10] Dubard, P.; Gaillard, P.; Klein, C., On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation, Eur Phys J Special Topics, 185, 247-258 (2010)
[11] Wu, HX; Zeng, YB; Fan, TY, The Boussinesq equation with self-consistent sources, Inverse Probl, 3, 035012 (2008) · Zbl 1167.35036
[12] Hu, HC; Liu, Y., New positon, negaton and complexiton solutions for the Hirota-Satsuma coupled KdV system, Phys Lett A, 372, 5795-5798 (2008) · Zbl 1223.35277
[13] Wadati, M., The exact solution of the modified Korteweg-de Vries equation, J Phys Soc Jpn, 32, 1681-1681 (1972)
[14] Wadati, M., The modified Korteweg-de Vries equation, J Phys Soc Jpn, 34, 1289-1296 (1973) · Zbl 1334.35299
[15] Masataka, I.; Hirota, R., Soliton solutions of a coupled modified KdV equations, J Phys Soc Jpn, 66, 577-588 (1997) · Zbl 0946.35078
[16] Fan, EG, Soliton solutions for the new complex version of a coupled KdV equation and a coupled MKdV equation, Phys Lett A, 282, 18-22 (2001) · Zbl 0984.37092
[17] Zha, QL; Li, JB, Periodic wave solutions of generalized derivative nonlinear Schrödinger equation, Chin Phys Lett, 25, 8-11 (2008)
[18] Zha, QL, Nth-order rogue wave solutions of the complex modified Korteweg-de Vries equation, Phys Scr, 87, 065401 (2013)
[19] He, JS; Wang, LH; Li, LJ, Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation, Phys Rev E, 89, 062917 (2014)
[20] Rodriguez, RF; Reyes, JA; Espinosa-Cerón, A., Standard and embedded solitons in nematic optical fibers, Phys Rev E, 68, 036606 (2003)
[21] Ablowitz, MJ; Clarkson, PA, Solitons, nonlinear evolution equations and inverse scattering (1991), Cambridge (NY): Cambridge University Press, Cambridge (NY) · Zbl 0762.35001
[22] Kupershmidt, BA; Wilson, G., Modifying Lax equations and the second Hamiltonian structure, Invent Math, 62, 403-436 (1981) · Zbl 0464.35024
[23] Terng, CL; Uhlenbeck, K., Backlund transformations and loop group actions, Comm Pure Appl Math, 53, 1-75 (2000) · Zbl 1031.37064
[24] Karney, CFF; Sen, A.; Chu, FYF; Bishop, AR; Schneider, T., Solitons and condensed matter physics, The complex modified Korteweg-de Vries equation a non-integrable evolution equation, 71-74 (1978), Berlin: Springer, Berlin
[25] Karney, CFF; Sen, A.; Chu, FYF, Nonlinear evolution of lower hybrid waves, Phys Fluids, 22, 940-952 (1978) · Zbl 0396.76014
[26] Gorbacheva, OB; Ostrovsky, LA, Nonlinear vector waves in a mechanical model of a molecular chain, Physica D, 8, 223-228 (1983)
[27] Erbay, S.; Suhubi, ES, Nonlinear wave propagation in micropolar media – I. The general theory, Int J Eng Sci, 27, 915-919 (1989) · Zbl 0694.73007
[28] Erbay, HA, Nonlinear transverse waves in a generalized elastic solid and the complex modified Korteweg-deVries equation, Phys Scr, 58, 9-14 (1998) · Zbl 0978.74043
[29] Leblond, H.; Mihalache, D., Optical solitons in the few-cycle regime: recent theoretical results, Rom Rep Phys, 63, 1254-1266 (2011)
[30] Leblond, H.; Triki, H.; Sanchez, F., Circularly polarized few-optical-cycle solitons in Kerr media: a complex modified Korteweg-de Vries model, Opt Commun, 285, 356-363 (2012)
[31] Matveev, V.; Salle, MA, Darboux transformations and solitons (1991), Berlin: Springer, Berlin · Zbl 0744.35045
[32] He, JS; Zhang, L.; Cheng, Y., Determinant representation of Darboux transformation for the AKNS system, Sci China Ser A Math, 12, 1867-1878 (2006) · Zbl 1110.35302
[33] He, JS; Zhang, HR; Wang, LH, Generating mechanism for higher-order rogue waves, Phys Rev E, 87, 052914 (2013)
[34] Zakharov, VE; Shabat, AB, Interaction between solitons in a stable medium, Sov Phys JETP, 34, 62-68 (1972)
[35] He, JS; Zhang, HR; Wang, LH, The degenerate solitons of the NLS equation (2013), Ningbo University
[36] Matveev, VB, Theory of positons I, Preprint of the Max-Planck-Institut fur Metallforschung in Stuttgart 1992, 1-21
[37] Wu, HX; Zeng, YB; Fan, TY, Positon and negaton solutions of the mKdV equation with self-consistent sources, J Phys A MathTheor, 40, 10505-10517 (2007) · Zbl 1124.35078
[38] Wu, HX; Fan, TY, Negaton and complexiton solutions of the sine-Gordon equation, Physica A, 379, 471-482 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.