×

Transformations and multi-solitonic solutions for a generalized variable-coefficient Kadomtsev-Petviashvili equation. (English) Zbl 1222.35177

Summary: Kadomtsev-Petviashvili equations with variable coefficients can be used to characterize many nonlinear phenomena in fluid dynamics and plasma physics more realistically than the equations with constant coefficients. Hereby, a generalized variable-coefficient Kadomtsev-Petviashvili equation with nonlinearity, dispersion and perturbed terms is investigated. Transformations, of which the consistency conditions are exactly the Painlevé integrability conditions, to the Korteweg-de Vries equation, cylindrical Korteweg-de Vries equation, Kadomtsev-Petviashvili equation and cylindrical Kadomtsev-Petviashvili equation are presented by formal dependent variable transformation assumptions. Using the Hirota bilinear method, from the variable-coefficient bilinear equation, the multi-solitonic solution, auto-Bäcklund transformation and Lax pair for the variable-coefficient Kadomtsev-Petviashvili equation are obtained. Moreover, the influence of inhomogeneity coefficients on solitonic structures and interaction properties is discussed for physical interest and possible applications.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C08 Soliton solutions
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
Full Text: DOI

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001
[2] Yadav, L. L.; Tiwari, R. S.; Maheshwari, K. P.; Sharma, S. R., Ion-acoustic nonlinear periodic waves in a two-electron-temperature plasma, Phys. Rev. E, 52, 3045-3052 (1995)
[3] Hong, H. S.; Lee, H. J., Korteweg-de Vries equation of ion acoustic surface waves, Phys. Plasmas, 16, 3422-3424 (1999)
[4] Lee, N. C., Small amplitude electron-acoustic double layers and solitons in fully relativistic plasmas of two-temperature electrons, Phys. Plasmas, 16, 042316 (2009)
[5] Ostrovsky, L. A.; Stepanyants, Yu. A., Do internal solitons exist in the ocean?, Rev. Geophys., 27, 293-310 (1989)
[6] Ge, H. X.; Cheng, R. J.; Dai, S. Q., KdV and Kink-Antikink solitons in car-following models, Physica A, 357, 466-476 (2005)
[7] Kadomtsev, B. B.; Petviashvili, V. I., On the stability of solitary waves in weakly dispersing media, Sov. Phys. Dokl., 15, 539-541 (1970) · Zbl 0217.25004
[8] Bryant, P. J., Two-dimensional periodic permanent waves in shallow water, J. Fluid Mech., 115, 525-532 (1982) · Zbl 0487.76025
[9] Duan, W. S., The Kadomtsev-Petviashvili (KP) equation of dust acoustic waves for hot dust plasmas, Chaos Solitons Fractals, 14, 503-506 (2002) · Zbl 1016.76099
[10] Lin, M. M.; Duan, W. S., The Kadomtsev-Petviashvili (KP), MKP, and coupled KP equations for two-ion-temperature dusty plasmas, Chaos Solitons Fractals, 23, 929-937 (2005) · Zbl 1069.35073
[11] Wang, Y. L.; Zhou, Z. X.; Jiang, X. Q.; Hou, C. F.; Jiang, Y. Y.; Sun, X. D.; Qin, R. H.; Zhang, H. F., Interaction of a weakly relativistic soliton in the magnetized plasma, Phys. Plasmas, 13, 052307 (2006)
[12] Ur-Rehman, H.; Khan, S. A.; Masood, W.; Siddiq, M., Solitary waves with weak transverse perturbations in quantum dusty plasmas, Phys. Plasmas, 15, 124501 (2008)
[13] Biswas, A., Solitary wave solution for KdV equation with power-law nonlinearity and time-dependent coefficients, Nonlinear Dyn., 58, 345-348 (2009) · Zbl 1183.35241
[14] Maxon, S.; Viecelli, J., Cylindrical solitons, Phys. Fluids, 39, 1614-1616 (1974)
[15] Tian, B.; Gao, Y. T., On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation, Phys. Lett. A, 340, 449-455 (2005) · Zbl 1145.35452
[16] Coffey, M. W., Nonlinear dynamics of vortices in ultraclean type-II superconductors: integrable wave equations in cylindrical geometry, Phys. Rev. B, 54, 1279-1285 (1996)
[17] Sahu, B.; Roychoudhury, R., Exact solutions of cylindrical and spherical dust ion acoustic waves, Phys. Plasmas, 10, 4162-4165 (2003)
[18] Jones, K. L.; He, X. G.; Chen, Y. K., Existence of periodic travelling wave solution to the forced generalized nearly concentric Korteweg-de Vries equation, Internat. J. Math. Math. Sci., 24, 371-377 (2000) · Zbl 0961.35143
[19] Johnson, R., Water waves and Korteweg-de Vries equations, J. Fluid Mech., 97, 701-719 (1980) · Zbl 0441.76012
[20] Misra, A. P.; Shukla, P. K.; Bhowmik, C., Electron-acoustic solitary waves in dense quantum electron-ion plasmas, Phys. Plasmas, 14, 082309 (2007)
[21] Gao, Y. T.; Tian, B., Some two-dimensional and non-travelling-wave observable effects of the shallow-water waves, Phys. Lett. A, 301, 74-82 (2002) · Zbl 0997.76013
[22] Gao, Y. T.; Tian, B., Cylindrical Kadomtsev-Petviashvili model, nebulons and symbolic computation for cosmic dust ion-acoustic waves, Phys. Lett. A, 349, 314-319 (2006)
[23] Tian, B.; Gao, Y. T., Cylindrical nebulons, symbolic computation and Bäcklund transformation for the cosmic dust acoustic waves, Phys. Plasmas, 12, 070703 (2005)
[24] Tian, B.; Wei, G. M.; Zhang, C. Y.; Shan, W. R.; Gao, Y. T., Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels, Bose-Einstein condensates, rods and positons with symbolic computation, Phys. Lett. A, 356, 8-16 (2006) · Zbl 1160.37401
[25] Wei, G. M.; Gao, Y. T.; Xu, T.; Meng, X. H.; Zhang, C. Y., Painlevé property and new analytic solutions for a variable-coefficient Kadomtsev-Petviashvili equation with symbolic computation, Chin. Phys. Lett., 25, 1599-1602 (2008)
[26] Yomba, E., Construction of new soliton-like solutions for the \((2 + 1)\) dimensional KdV equation with variable coefficients, Chaos Solitons Fractals, 21, 75-79 (2004) · Zbl 1049.35165
[27] Ye, L. Y.; Lv, Y. N.; Zhang, Y.; Jin, H. P., Grammian solutions to a variable-coefficient KP equation, Chin. Phys. Lett., 25, 357-358 (2008)
[28] David, D.; Levi, D.; Winternitz, P., Integrable nonlinear equations for water waves in straits of varying depth and width, Stud. Appl. Math., 76, 133-168 (1987) · Zbl 0678.35008
[29] David, D.; Levi, D.; Winternitz, P., Solitons in shallow seas of variable depth and in marine straits, Stud. Appl. Math., 80, 1-23 (1989) · Zbl 0728.76023
[30] Gwinn, A. W., Two-dimensional long waves in turbulent flow over a sloping bottom, J. Fluid Mech., 341, 195-223 (1997) · Zbl 0890.76011
[31] Milewski, P., Long wave interaction over varying topography, Physica D, 123, 36-47 (1998) · Zbl 0949.76016
[32] Tian, B.; Gao, Y. T., Solutions of a variable-coefficient Kadomtsev-Petviashvili equation via computer algebra, Appl. Math. Comput., 84, 125-130 (1997) · Zbl 0881.35105
[33] Meng, X. H.; Tian, B.; Zhang, H. Q., Pfaffianization of the generalized variable-coefficient Kadomtsev-Petviashvili equation, Appl. Math. Comput., 217, 1300-1305 (2010) · Zbl 1410.35177
[34] Yomba, E., Abundant families of Jacobi elliptic function-like solutions for a generalized variable coefficients 2D KdV equation via the extended mapping method, Phys. Lett. A, 349, 212-219 (2006) · Zbl 1195.35003
[35] Xuan, H. N.; Zhang, D. F.; Wang, C. J., Families of non-travelling wave solutions to a generalized variable coefficient two-dimensional KdV equation using symbolic computation, Chaos Solitons Fractals, 23, 171-174 (2005) · Zbl 1070.35079
[36] Elwakil, S. A.; El-labany, S. K.; Zahran, M. A.; Sabry, R., New exact solutions for a generalized variable coefficients 2D KdV equation, Chaos Solitons Fractals, 19, 1083-1086 (2004) · Zbl 1068.35127
[37] Apel, J. R.; Ostrovsky, L. A.; Stepanyants, Y. A.; Lynch, J. F., Internal solitons in the ocean and their effect on underwater sound, J. Acoust. Soc. Am., 121, 695-722 (2007)
[38] Chen, Y. Z.; Liu, P. L.-F., The unified Kadomtsev-Petviashvili equation for interfacial waves, J. Fluid Mech., 288, 383-408 (1995) · Zbl 0854.76023
[39] Meng, J. M.; Zhang, Z. L.; Zhao, J. S.; Zhang, J., The simulation of the SAR image of internal solitary waves in Alboran sea, J. Hydrodyn. Ser. B, 3, 88-92 (2001)
[40] Zhu, Z. N., Soliton-like solutions of generalized KdV equation with external force term, Acta Phys. Sinica, 41, 1561-1566 (1992), (in Chinese) · Zbl 0810.35118
[41] Mao, J. J.; Yang, J. R., A new method of new exact solutions and solitary wave-like solutions for the generalized variable coefficients Kadomtsev-Petviashvili equation, Chin. Phys., 15, 2804-2808 (2006)
[42] Clarkson, P. A.; Kruskal, M. D., New similarity reductions of the Boussinesq equation, J. Math. Phys., 30, 2201-2213 (1989) · Zbl 0698.35137
[43] Boiti, M.; Pempinelli, F., Similarity solutions of the Korteweg-de Vries equation, Nuovo Cimento Soc. Ital. Fis. B, 51, 70-78 (1979)
[44] Mei, J. Q.; Zhang, H. Q., New soliton-like and periodic-like solutions for the KdV equation, Appl. Math. Comput., 169, 589-599 (2005) · Zbl 1121.65358
[45] Jaworski, M., Breather-like solution of the Korteweg-de Vries equation, Phys. Lett. A, 104, 245-247 (1984)
[46] Ma, W. X., Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A, 301, 35-44 (2002) · Zbl 0997.35066
[47] Abdou, M. A., Generalized solitonary and periodic solutions for nonlinear partial differential equations by the exp-function method, Nonlinear Dyn., 52, 1-9 (2008) · Zbl 1173.35647
[48] Liu, C. F., New exact periodic solitary wave solutions for Kadomtsev-Petviashvili equation, Appl. Math. Comput., 217, 1350-1354 (2010) · Zbl 1203.35232
[49] Chow, K. W.; Lai, W. C.; Shek, C. K.; Tso, K., Positon-like solutions of nonlinear evolution equations in \((2 + 1)\) dimensions, Chaos Solitons Fractals, 9, 1901-1912 (1998) · Zbl 0934.35152
[50] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge University Press: Cambridge University Press New York · Zbl 1099.35111
[51] Matsuno, Y., Bilinear Transformation Method (1984), Academic: Academic New York · Zbl 0552.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.