×

Generating mechanism and dynamic of the smooth positons for the derivative nonlinear Schrödinger equation. (English) Zbl 1430.35212

Summary: Based on the degenerate Darboux transformation, the \(n\)-order smooth positon solutions for the derivative nonlinear Schrödinger equation are generated by means of the general determinant expression of the \(N\)-soliton solution, and interesting dynamic behaviors of the smooth positons are shown by the corresponding three-dimensional plots in this paper. Furthermore, the decomposition process, bent trajectory and the change of the phase shift for the positon solutions are discussed in detail. Additionally, three kinds of mixed solutions, namely (1) the hybrid of one-positon and two-positon solutions, (2) the hybrid of two-positon and two-positon solutions, and (3) the hybrid of one-soliton and three-positon solutions, are presented and their rather complicated dynamics are revealed.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35C08 Soliton solutions

References:

[1] Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205-208 (1992) · doi:10.1016/0375-9601(92)90362-P
[2] Matveev, V.B.: Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166, 209-212 (1992) · doi:10.1016/0375-9601(92)90363-Q
[3] Chow, K.W., Lai, W.C., Shek, C.K., Tso, K.: Positon-like Solutions of Nonlinear Evolution Equations in (2+1) Dimensions. Chaos Solitons Fractals 9, 1901-1912 (1998) · Zbl 0934.35152 · doi:10.1016/S0960-0779(97)00128-8
[4] Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Spec. Top. 185, 247-258 (2010) · doi:10.1140/epjst/e2010-01252-9
[5] Beutler, R., Stahlhofen, A.A., Matveev, V.B.: What do solitons, breathers and positons have in common? Phys. Scr. 50, 9-20 (1994) · doi:10.1088/0031-8949/50/1/001
[6] Stahlhofen, A.A.: Positons of the modified Korteweg-de Vries equation. Ann. Phys. 504, 554-569 (1992) · Zbl 0771.35064 · doi:10.1002/andp.19925040708
[7] Maisch, H., Stahlhofen, A.A.: Dynamic properties of positons. Phys. Scr. 52, 228-236 (1995) · doi:10.1088/0031-8949/52/3/002
[8] Beutler, R.: Positon solutions of the sine-Gordon equation. J. Math. Phys. 34, 3081-3109 (1993) · Zbl 0777.35070 · doi:10.1063/1.530065
[9] Stahlhofen, A.A., Matveev, V.B.: Positons for the Toda lattice and related spectral problems. J. Phys. A 28, 1957-1965 (1995) · Zbl 0843.58071 · doi:10.1088/0305-4470/28/7/017
[10] Hu, H.C., Liu, Y.: New positon, negaton and complexiton solutions for the Hirota-Satsuma coupled KdV system. Phys. Lett. A. 372, 5795-5798 (2008) · Zbl 1223.35277 · doi:10.1016/j.physleta.2008.07.030
[11] Xing, Q.X., Wu, Z.W., Mihalache, D., He, J.S.: Smooth positon solutions of the focusing modified Korteweg-de Vries equation. Nonlinear Dyn. 89, 1-12 (2017) · doi:10.1007/s11071-017-3579-x
[12] Liu, W., Zhang, Y.S., He, J.S.: Dynamics of the smooth positons of the complex modified KdV equation. Waves Random Complex 28, 203-214 (2018) · Zbl 07583349 · doi:10.1080/17455030.2017.1335916
[13] Liu, S.Z., Zhang, Y.S., He, J.S.: Smooth positons of the second-type derivative nonlinear Schrödinger equation. Commun. Theor. Phys. 71, 357-361 (2019) · Zbl 1452.35191 · doi:10.1088/0253-6102/71/4/357
[14] Matveev, V.B.: Positons: slowly decreasing analogues of solitons. Theor. Math. Phys. 131, 483-497 (2002) · Zbl 1029.37051 · doi:10.1023/A:1015149618529
[15] Capasso, F., Sirtori, C., Faist, J., Sivco, D.L., Chu, S.N.G., Cho, A.Y.: Observation of an electronic bound state above a potential well. Nature 358, 565-567 (1992) · doi:10.1038/358565a0
[16] Ablowitz, M.J.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125-127 (1973) · Zbl 1243.35143 · doi:10.1103/PhysRevLett.31.125
[17] Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. J. Theor. Phys. 34, 62-69 (1972)
[18] Konopelchenko, B.G.: On the structure of equations integrable by the arbitrary-order linear spectral problem. J. Phys. A 14, 1237-1259 (1981) · Zbl 0469.35009 · doi:10.1088/0305-4470/14/6/005
[19] Johnson, R.S.: On the modulation of water waves in the neighbourhood of \[kh\] kh \[\approx \]≈ 1.363. Proc. R. Soc. Lond. A 357, 131-141 (1977) · Zbl 0375.76017 · doi:10.1098/rspa.1977.0159
[20] Mjølhus, E.: On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321-334 (1976) · doi:10.1017/S0022377800020249
[21] Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490-492 (1979) · Zbl 1063.37559 · doi:10.1088/0031-8949/20/3-4/026
[22] Gerdjikov, V.S., Ivanov, I.: A quadratic pencil of general type and nonlinear evolution equations: II. Hierarchies of Hamiltonian structures. J. Phys. Bulg. 10, 130-143 (1983) · Zbl 0522.35082
[23] Wadati, M., Sogo, K.: Gauge transformations in soliton theory. J. Phys. Soc. Jpn. 52, 394-398 (1983) · doi:10.1143/JPSJ.52.394
[24] Kundu, A.: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger type equations. J. Math. Phys. 25, 3433-3438 (1984) · doi:10.1063/1.526113
[25] Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519-1523 (1995) · Zbl 0972.35535 · doi:10.1143/JPSJ.64.1519
[26] Spangler, S.P.: Nonlinear waves and chaos. In: Hada, T., Matsumoto, H. (eds.) Space Plasmas, p. 171. Tokyo: Terrapub (1997)
[27] Fedun, V., Ruderman, M.S., Erdélyi, R.: Generation of short-lived large-amplitude magnetohydrodynamic pulses by dispersive focusing. Phys. Lett. A 372, 6107-6110 (2008) · Zbl 1223.76134 · doi:10.1016/j.physleta.2008.08.025
[28] Sánchez-Arriaga, G., Sanmartin, J.R., Elaskar, S.A.: Damping models in the truncated derivative nonlinear Schrödinger equation. Phys. Plasmas 14, 082108 (2007) · doi:10.1063/1.2768513
[29] Sánchez-Arriaga, G.: Alfvén soliton and multisoliton dynamics perturbed by nonlinear Landau damping. Phys. Plasmas 17, 082313 (2010) · doi:10.1063/1.3470079
[30] Tzoar, N., Jain, M.: Self-phase modulation in long-geometry optical waveguide. Phys. Rev. A 23, 1266-1270 (1981) · doi:10.1103/PhysRevA.23.1266
[31] Anderson, D., Lisak, M.: Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A 27, 1393-1398 (1983) · doi:10.1103/PhysRevA.27.1393
[32] Govind, P.A.: Nonlinear Fibers Optics, 3rd edn. Academic, New York (2001)
[33] Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798-801 (1978) · Zbl 0383.35015 · doi:10.1063/1.523737
[34] Kawata, T., Kobayashi, N., Inoue, H.: Soliton solution of the derivative nolinear Schrödinger equation. J. Phys. Soc. Jpn. 46, 1008-1015 (1979) · Zbl 1334.81101 · doi:10.1143/JPSJ.46.1008
[35] Huang, N.N., Chen, Z.Y.: Alfvén solitons. J. Phys. A 23, 439-453 (1990) · Zbl 0708.35083 · doi:10.1088/0305-4470/23/4/014
[36] Chen, X.J., Lam, W.K.: Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Phys. Rev. E 69, 066604 (2004) · doi:10.1103/PhysRevE.69.066604
[37] Fla, T., Mjølhus, E., Wyller, J.: Nonlinear Landau damping of weakly dispersive circularly polarized MHD waves. Phys. Scr. 40, 219-226 (1989) · Zbl 0679.76057 · doi:10.1088/0031-8949/40/2/012
[38] Ling, L.M., Liu, Q.P.: Darboux transformation for a two-component derivative nonlinear schrödinger equation. J. Phys. A 43, 434023 (2010) · Zbl 1202.35302 · doi:10.1088/1751-8113/43/43/434023
[39] Chan, H.N., Chow, K.W., Kedziora, D.J., Grimshaw, R.H.J., Ding, E.: Rogue wave modes for a derivative nonlinear Schrödinger model. Phys. Rev. E 89, 032914 (2014) · doi:10.1103/PhysRevE.89.032914
[40] Chan, H.N., Malomed, B.A., Chow, K.W., Ding, E.: Rogue waves for a system of coupled derivative nonlinear Schrödinger equations. Phys. Rev. E 93, 012217 (2016) · doi:10.1103/PhysRevE.93.012217
[41] Xu, S.W., He, J.S., Wang, L.H.: The Darboux transformation of the derivative nonlinear Schrödinger equation. J. Phys. A 44, 305203 (2011) · Zbl 1221.81063 · doi:10.1088/1751-8113/44/30/305203
[42] He, J.S., Xu, S.W., Cheng, Y.: The rational solutions of the mixed nonlinear Schrödinger equation. AIP Adv. 5, 017105 (2015) · doi:10.1063/1.4905701
[43] Qiu, D.Q., He, J.S., Zhang, Y.S., Porsezian, K.: The darboux transformation of the Kundu-Eckhaus equation. Proc. R. Soc. Lond. A 471, 1-20 (2015) · Zbl 1371.35277 · doi:10.1098/rspa.2015.0236
[44] Yuan, F., Qiu, D.Q., Liu, W., Porsezian, K., He, J.S.: On the evolution of a rogue wave along the orthogonal direction of the \[(t, x)\](t,x)-plane. Commun. Nonlinear Sci. Numer. Simul. 44, 245-257 (2017) · Zbl 1466.35334 · doi:10.1016/j.cnsns.2016.08.012
[45] He, J.S., Zhang, L., Cheng, Y.: Determinant representation of Darboux transformation for the AKNS system. Sci. China Ser. A Math. 49, 1867-1878 (2006) · Zbl 1110.35302 · doi:10.1007/s11425-006-2025-1
[46] Wadati, M., Ohkuma, K.: Multiple-pole solutions of the modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 51, 2029-2035 (1982) · doi:10.1143/JPSJ.51.2029
[47] Takahashi, M., Konno, K.: N-double pole solution for the modified Korteweg-de Vries equation by the Hirota’s method. J. Phys. Soc. Jpn. 58, 3505-3508 (1989) · doi:10.1143/JPSJ.58.3505
[48] Karlsson, M., Kaup, D.J., Malomed, B.A.: Interactions between polarized soliton pulses in optical fibers: exact solutions. Phys. Rev. E 54, 5802-5808 (1996) · doi:10.1103/PhysRevE.54.5802
[49] Shek, C.M., Grimshaw, R.H.J., Ding, E., Chow, K.W.: Interactions of breathers and solitons of the extended Korteweg-de Vries equation. Wave Motion 43, 158-166 (2005) · Zbl 1231.35196 · doi:10.1016/j.wavemoti.2005.09.005
[50] Alejo, M.A.: Focusing mKdV breather solutions with nonvanishing boundary condition by the inverse scattering method. J. Nonlinear Math. Phys. 19, 125009 (2012) · Zbl 1238.35125 · doi:10.1142/S140292511250009X
[51] Olmedilla, E.: Multiple-pole solutions of the nonlinear Schrödinger equation. Phys. D 25, 330-346 (1987) · Zbl 0634.35080 · doi:10.1016/0167-2789(87)90107-2
[52] He, J.S., Zhang, H.R., Wang, L.H., Porsezian, K., Fokas, A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013) · doi:10.1103/PhysRevE.87.052914
[53] Wang, L.H., He, J.S., Xu, H., Wang, J., Porsezian, K.: Generation of higher-order rogue waves from multibreathers by double degeneracy in an optical fiber. Phys. Rev. E 95, 042217 (2017) · doi:10.1103/PhysRevE.95.042217
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.