×

Empirical process theory for locally stationary processes. (English) Zbl 1486.60064

Functional dependence measure, which uses a Bernoulli shift representation and decomposition into martingales and \(m\)-dependent sequences, became popular recently as an alternative measure of dependence among random variables but no general empirical process theory (allowing for general classes of functions) using this measure is available. In this paper, maximal inequalities and functional central limit theorems of empirical processes are proved under functional dependence. The connections and comparisons of these results to that under other measures of dependences, such as that defined by Markov chains and mixing coefficients, are also studied. This paper works in the framework of locally stationary processes and therefore automatically provides the first general empirical process theory in this setting. As an application, uniform convergence rates for nonparametric regression and M-estimators with locally stationary noise are obtained.

MSC:

60F17 Functional limit theorems; invariance principles
60G10 Stationary stochastic processes

References:

[1] Adamczak, R. (2008). A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab. 13 1000-1034. · Zbl 1190.60010 · doi:10.1214/EJP.v13-521
[2] Andrews, D.W.K. and Pollard, D. (1994). An introduction to functional central limit theorems for dependent stochastic processes. Int. Stat. Rev. 62 119-132. · Zbl 0834.60033
[3] Arcones, M.A. and Yu, B. (1994). Central limit theorems for empirical and \(U\)-processes of stationary mixing sequences. J. Theoret. Probab. 7 47-71. · Zbl 0786.60028 · doi:10.1007/BF02213360
[4] Berkes, I., Hörmann, S. and Schauer, J. (2009). Asymptotic results for the empirical process of stationary sequences. Stochastic Process. Appl. 119 1298-1324. · Zbl 1161.60312 · doi:10.1016/j.spa.2008.06.010
[5] Borkar, V.S. (1993). White-noise representations in stochastic realization theory. SIAM J. Control Optim. 31 1093-1102. · Zbl 0788.93081 · doi:10.1137/0331050
[6] Borovkova, S., Burton, R. and Dehling, H. (2001). Limit theorems for functionals of mixing processes with applications to \(U\)-statistics and dimension estimation. Trans. Amer. Math. Soc. 353 4261-4318. · Zbl 0980.60031 · doi:10.1090/S0002-9947-01-02819-7
[7] Dahlhaus, R. and Polonik, W. (2009). Empirical spectral processes for locally stationary time series. Bernoulli 15 1-39. · Zbl 1204.62156 · doi:10.3150/08-BEJ137
[8] Dahlhaus, R., Richter, S. and Wu, W.B. (2019). Towards a general theory for nonlinear locally stationary processes. Bernoulli 25 1013-1044. · Zbl 1427.60057 · doi:10.3150/17-bej1011
[9] Dedecker, J. (2010). An empirical central limit theorem for intermittent maps. Probab. Theory Related Fields 148 177-195. · Zbl 1203.60039 · doi:10.1007/s00440-009-0227-5
[10] Dedecker, J. and Louhichi, S. (2002). Maximal inequalities and empirical central limit theorems. In Empirical Process Techniques for Dependent Data 137-159. Boston, MA: Birkhäuser. · Zbl 1053.60016
[11] Dedecker, J. and Prieur, C. (2007). An empirical central limit theorem for dependent sequences. Stochastic Process. Appl. 117 121-142. · Zbl 1117.60035 · doi:10.1016/j.spa.2006.06.003
[12] Dehling, H., Durieu, O. and Volny, D. (2009). New techniques for empirical processes of dependent data. Stochastic Process. Appl. 119 3699-3718. · Zbl 1176.60023 · doi:10.1016/j.spa.2009.07.003
[13] Donsker, M.D. (1952). Justification and extension of Doob’s heuristic approach to the Komogorov-Smirnov theorems. Ann. Math. Stat. 23 277-281. · Zbl 0046.35103
[14] Doukhan, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics 85. New York: Springer. · Zbl 0801.60027 · doi:10.1007/978-1-4612-2642-0
[15] Doukhan, P., Massart, P. and Rio, E. (1995). Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincaré Probab. Stat. 31 393-427. · Zbl 0817.60028
[16] Doukhan, P. and Neumann, M.H. (2007). Probability and moment inequalities for sums of weakly dependent random variables, with applications. Stochastic Process. Appl. 117 878-903. · Zbl 1117.60018 · doi:10.1016/j.spa.2006.10.011
[17] Dudley, R.M. (1966). Weak convergences of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10 109-126. · Zbl 0178.52502
[18] Dudley, R.M. (1978). Central limit theorems for empirical measures. Ann. Probab. 6 899-929. · Zbl 0404.60016
[19] Dudley, R.M. (2014). Uniform Central Limit Theorems, 2nd ed. Cambridge Studies in Advanced Mathematics 142. New York: Cambridge Univ. Press. · Zbl 1317.60030
[20] Durieu, O. and Tusche, M. (2014). An empirical process central limit theorem for multidimensional dependent data. J. Theoret. Probab. 27 249-277. · Zbl 1335.62084 · doi:10.1007/s10959-012-0450-3
[21] Ellis, R.S. and Wyner, A.D. (1989). Uniform large deviation property of the empirical process of a Markov chain. Ann. Probab. 17 1147-1151. · Zbl 0685.60030
[22] Francq, C. and Zakoïan, J.-M. (2006). Mixing properties of a general class of GARCH(1,1) models without moment assumptions on the observed process. Econometric Theory 22 815-834. · Zbl 1100.62083 · doi:10.1017/S0266466606060373
[23] Giné, E. and Nickl, R. (2016). Mathematical Foundations of Infinite-Dimensional Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics, [40]. New York: Cambridge Univ. Press. · Zbl 1358.62014 · doi:10.1017/CBO9781107337862
[24] Hansen, B.E. (2008). Uniform convergence rates for kernel estimation with dependent data. Econometric Theory 24 726-748. · Zbl 1284.62252 · doi:10.1017/S0266466608080304
[25] Heinrich, L. (1992). Bounds for the absolute regularity coefficient of a stationary renewal process. Yokohama Math. J. 40 25-33. · Zbl 0771.60066
[26] Karlsen, H.A. and Tjøstheim, D. (2001). Nonparametric estimation in null recurrent time series. Ann. Statist. 29 372-416. · Zbl 1103.62335 · doi:10.1214/aos/1009210546
[27] Kulik, R., Soulier, P. and Wintenberger, O. (2019). The tail empirical process of regularly varying functions of geometrically ergodic Markov chains. Stochastic Process. Appl. 129 4209-4238. · Zbl 1448.60114 · doi:10.1016/j.spa.2018.11.014
[28] Levental, S. (1988). Uniform limit theorems for Harris recurrent Markov chains. Probab. Theory Related Fields 80 101-118. · Zbl 0638.60030 · doi:10.1007/BF00348754
[29] Li, D., Tjøstheim, D. and Gao, J. (2016). Estimation in nonlinear regression with Harris recurrent Markov chains. Ann. Statist. 44 1957-1987. · Zbl 1349.62380 · doi:10.1214/15-AOS1379
[30] Liebscher, E. (1996). Strong convergence of sums of \(α\)-mixing random variables with applications to density estimation. Stochastic Process. Appl. 65 69-80. · Zbl 0885.62045 · doi:10.1016/S0304-4149(96)00096-8
[31] Liu, W., Xiao, H. and Wu, W.B. (2013). Probability and moment inequalities under dependence. Statist. Sinica 23 1257-1272. · Zbl 1534.60027
[32] Mayer, U. (2019). Functional weak limit theorem for a local empirical process of non-stationary time series and its application to von Mises-statistics.
[33] Meyn, S. and Tweedie, R.L. (2009). Markov Chains and Stochastic Stability, 2nd ed. Cambridge: Cambridge Univ. Press. With a prologue by Peter W. Glynn. · Zbl 1165.60001 · doi:10.1017/CBO9780511626630
[34] Mokkadem, A. (1988). Mixing properties of ARMA processes. Stochastic Process. Appl. 29 309-315. · Zbl 0647.60042 · doi:10.1016/0304-4149(88)90045-2
[35] Ossiander, M. (1987). A central limit theorem under metric entropy with \[{L_2}\] bracketing. Ann. Probab. 15 897-919. · Zbl 0665.60036
[36] Pham, T.D. and Tran, L.T. (1985). Some mixing properties of time series models. Stochastic Process. Appl. 19 297-303. · Zbl 0564.62068 · doi:10.1016/0304-4149(85)90031-6
[37] Phandoidaen, N. and Richter, S. (2022). Supplement to “Empirical process theory for locally stationary processes.” · Zbl 1486.60064 · doi:10.3150/21-BEJ1351SUPP
[38] Pinelis, I. (1994). Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab. 22 1679-1706. · Zbl 0836.60015 · doi:10.1214/aop/1176988477
[39] Pollard, D. (1982). A central limit theorem for empirical processes. J. Aust. Math. Soc. A 33 235-248. · Zbl 0504.60023
[40] Rio, E. (1995). The functional law of the iterated logarithm for stationary strongly mixing sequences. Ann. Probab. 23 1188-1203. · Zbl 0833.60024 · doi:10.1214/aop/1176988179
[41] Rio, E. (1998). Processus empiriques absolument réguliers et entropie universelle. Probab. Theory Related Fields 111 585-608. · Zbl 0911.60010 · doi:10.1007/s004400050179
[42] Rio, E. (2017). Asymptotic Theory of Weakly Dependent Random Processes. Probability Theory and Stochastic Modelling 80. Berlin: Springer. Translated from the 2000 French edition [MR2117923]. · Zbl 1378.60003 · doi:10.1007/978-3-662-54323-8
[43] Samur, J.D. (2004). A regularity condition and a limit theorem for Harris ergodic Markov chains. Stochastic Process. Appl. 111 207-235. · Zbl 1087.60056 · doi:10.1016/j.spa.2004.02.005
[44] Truquet, L. (2020). A perturbation analysis of Markov chains models with time-varying parameters. Bernoulli 26 2876-2906. · Zbl 1455.60092 · doi:10.3150/20-BEJ1210
[45] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press. · Zbl 0943.62002 · doi:10.1017/CBO9780511802256
[46] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer Series in Statistics. New York: Springer. · Zbl 0862.60002 · doi:10.1007/978-1-4757-2545-2
[47] Vogt, M. (2012). Nonparametric regression for locally stationary time series. Ann. Statist. 40 2601-2633. · Zbl 1373.62459 · doi:10.1214/12-AOS1043
[48] Wu, W.B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150-14154. · Zbl 1135.62075 · doi:10.1073/pnas.0506715102
[49] Wu, W.B. (2008). Empirical processes of stationary sequences. Statist. Sinica 18 313-333. · Zbl 1137.62027
[50] Wu, W.B. (2011). Asymptotic theory for stationary processes. Stat. Interface 4 207-226. · Zbl 1513.62185 · doi:10.4310/SII.2011.v4.n2.a15
[51] Yu, B. (1994). Rates of convergence for empirical processes of stationary mixing sequences. Ann. Probab. 22 94-116. · Zbl 0802.60024 · doi:10.1214/aop/1176988849
[52] Zhang, D. and Wu, W.B. (2017). Gaussian approximation for high dimensional time series. Ann. Statist. 45 1895-1919 · Zbl 1381.62254 · doi:10.1214/16-AOS1512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.