×

Effects of multiple families of nonlinear fibers on finite deformation near a crack tip in a neo-Hookean sheet. (English) Zbl 1475.74110

Summary: In this paper, we investigate the asymptotic crack tip fields in a neo-Hookean sheet reinforced by two families of nonlinear fibers, where the fibers are characterized by the standard reinforcing model. In the asymptotic analysis, the fibers with stronger stiffening compared to the matrix dominate the mechanical behavior at the crack tip, which simplifies the analysis. A hodograph transformation is used to solve for the leading and higher order eigenmodes for the nonlinear eigenvalue problem derived from the model. Asymptotic path-independent \(J\)-integrals are constructed to evaluate the leading order parameters separately. The asymptotic crack tip fields agree well with finite element results for different combinations of fiber orientation angles and modulus ratios. We find that the peak value of stress for the case with two families of fibers decreases significantly compared to the case for a single family of fibers.

MSC:

74R10 Brittle fracture
74G70 Stress concentrations, singularities in solid mechanics
74E30 Composite and mixture properties
74B20 Nonlinear elasticity
74G10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics
Full Text: DOI

References:

[1] Arfaoui, M.; Trifa, M.; Mansouri, K.; Karoui, A.; Renard, Y., Three-dimensional singular elastostatic fields in a cracked Neo-Hookean hyperelastic solid, Int. J. Eng. Sci., 128, 1-11 (2018) · Zbl 1423.74118
[2] Begley, M. R.; Creton, C.; McMeeking, R. M., The elastostatic plane strain mode I crack tip stress and displacement fields in a generalized linear neo-Hookean elastomer, J. Mech. Phys. Solid., 84, 21-38 (2015) · Zbl 1481.74689
[3] Borst, R. de; Verhoosel, C. V., Damage, material instabilities, and failure, Encyclopedia of Computational Mechanics, 1-50 (2017), American Cancer Society
[4] Connolly, F.; Walsh, C. J.; Bertoldi, K., Automatic design of fiber-reinforced soft actuators for trajectory matching, Proc. Natl. Acad. Sci. Unit. States Am., 114, 51-56 (2017)
[5] Courant, R.; Friedrichs, K. O., Supersonic Flow and Shock Waves (1948), Intersci. Publ. Inc N. Y. · Zbl 0041.11302
[6] Di Stasio, L.; Liu, Y.; Moran, B., Large Deformation Near a Crack Tip in a Fiber-Reinforced Neo-Hookean Sheet with Discrete and Continuous Distributions of Fiber Orientations, Theor. Appl. Fract. Mech. (2021)
[7] Gasser, T. C.; Ogden, R. W.; Holzapfel, G. A., Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface, 3, 15-35 (2006)
[8] Geubelle, P. H.; Knauss, W. G., Finite strains at the tip of a crack in a sheet of hyperelastic material: I. Homogeneous case, J. Elasticity, 35, 61-98 (1994) · Zbl 0818.73052
[9] Geubelle, P. H.; Knauss, W. G., Finite strains at the tip of a crack in a sheet of hyperelastic material: II. Special bimaterial cases, J. Elasticity, 35, 99-137 (1994) · Zbl 0818.73052
[10] Guo, Z.; Peng, X.; Moran, B., A composites-based hyperelastic constitutive model for soft tissue with application to the human annulus fibrosus, J. Mech. Phys. Solid., 54, 1952-1971 (2006) · Zbl 1120.74634
[11] Holzapfel, G. A., Structural and numerical models for the (Visco)elastic response of arterial walls with residual stresses, (Holzapfel, G. A.; Ogden, R. W., Biomechanics of Soft Tissue in Cardiovascular Systems, International Centre for Mechanical Sciences (2003), Springer Vienna), 109-184 · Zbl 1151.74383
[12] Holzapfel, G. A., Computational biomechanics of soft biological tissue, Encycl. Comput. Mech. (2004)
[13] Holzapfel, G. A.; Ogden, R. W., Comparison of two model frameworks for fiber dispersion in the elasticity of soft biological tissues, Eur. J. Mech. - ASolids, 66, 193-200 (2017) · Zbl 1406.74497
[14] Holzapfel, G. A.; Gasser, T. C.; Ogden, R. W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast. Phys. Sci. Solids, 61, 1-48 (2000) · Zbl 1023.74033
[15] Holzapfel, G. A.; Ogden, R. W.; Sherifova, S., On fibre dispersion modelling of soft biological tissues: a review, Proc. R. Soc. Math. Phys. Eng. Sci., 475, 20180736 (2019) · Zbl 1472.74156
[16] Knowles, J. K., The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids, Int. J. Fract., 13, 611-639 (1977)
[17] Knowles, J. K.; Sternberg, E., An asymptotic finite-deformation analysis of the elastostatic field near the tip of a crack, J. Elasticity, 3, 67-107 (1973)
[18] Knowles, J. K.; Sternberg, E., Finite-deformation analysis of the elastostatic field near the tip of a crack: reconsideration and higher-order results, J. Elasticity, 4, 201-233 (1974) · Zbl 0286.73076
[19] Knowles, J. K.; Sternberg, E., Large deformations near a tip of an interface-crack between two Neo-Hookean sheets, J. Elasticity, 13, 257-293 (1983) · Zbl 0546.73079
[20] Li, F. Z.; Shih, C. F.; Needleman, A., A comparison of methods for calculating energy release rates, Eng. Fract. Mech., 21, 405-421 (1985)
[21] Liu, Y.; Moran, B., Large deformation near a crack tip in a fiber-reinforced neo-Hookean sheet, J. Mech. Phys. Solid., 143, 104049 (2020)
[22] Liu, Y.; Moran, B., Asymptotic path-independent integrals for the evaluation of crack-tip parameters in a neo-Hookean material, Int. J. Fract., 224, 133-150 (2020)
[23] Liu, Y.; Moran, B., Crack tip fields in a neo-Hookean sheet reinforced by nonlinear fibers, J. Mech. Phys. Solid., 152, 104406 (2021)
[24] Liu, Y.; Moran, B., Hodograph transformation for asymptotic crack-tip fields in isotropic hyperelastic sheets: higher order eigenmodes and path-independent integrals, Int. J. Fract. (2021)
[25] Liu, Y.; Zhang, H.; Zhang, J.; Zheng, Y., Constitutive modeling for polymer hydrogels: a new perspective and applications to anisotropic hydrogels in free swelling, Eur. J. Mech. - ASolids, 54, 171-186 (2015) · Zbl 1406.76096
[26] Long, R.; Hui, C.-Y., Effects of finite chain extensibility on the stress fields near the tip of a mode III crack, Proc. R. Soc. Math. Phys. Eng. Sci., 467, 3170-3187 (2011) · Zbl 1239.74088
[27] Long, R.; Hui, C.-Y., Crack tip fields in soft elastic solids subjected to large quasi-static deformation — a review, Extreme Mech. Lett., 4, 131-155 (2015)
[28] Long, R.; Krishnan, V. R.; Hui, C.-Y., Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress, J. Mech. Phys. Solid., 59, 672-695 (2011) · Zbl 1270.74180
[29] Merodio, J.; Ogden, R. W., Material instabilities in fiber-reinforced nonlinearly elastic solids under plane deformation, Arch. Mech., 54 (2002), 525-552-552 · Zbl 1064.74013
[30] Merodio, J.; Ogden, R. W., Mechanical response of fiber-reinforced incompressible non-linearly elastic solids, Int. J. Non-Linear Mech., Special Issue in Honour of C.O. Horgan, 40, 213-227 (2005) · Zbl 1349.74057
[31] Merodio, J.; Ogden, R. W., On tensile instabilities and ellipticity loss in fiber-reinforced incompressible non-linearly elastic solids, Mech. Res. Commun., 32, 290-299 (2005) · Zbl 1192.74082
[32] Merodio, J.; Ogden, R. W., Tensile instabilities and ellipticity in fiber-reinforced compressible non-linearly elastic solids, Int. J. Eng. Sci., 43, 697-706 (2005) · Zbl 1211.74036
[33] Merodio, J.; Ogden, R. W., The influence of the invariant I8 on the stress-deformation and ellipticity characteristics of doubly fiber-reinforced non-linearly elastic solids, Int. J. Non Lin. Mech., 41, 556-563 (2006) · Zbl 1160.74318
[34] Moran, B.; Shih, C. F., Crack tip and associated domain integrals from momentum and energy balance, Eng. Fract. Mech., 27, 615-642 (1987)
[35] Qiu, G. Y.; Pence, T. J., Remarks on the behavior of simple directionally reinforced incompressible nonlinearly elastic solids, J. Elasticity, 49, 1-30 (1997) · Zbl 0964.74008
[36] Ravichandran, G.; Knauss, W. G., A finite elastostatic analysis of bimaterial interface cracks, Int. J. Fract., 39, 235-253 (1989)
[37] Rice, J. R., Stresses due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear, J. Appl. Mech., 34, 287-298 (1967)
[38] Rice, J. R., A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 379-386 (1968)
[39] Rivlin, R. S.; Thomas, A. G., Rupture of rubber. I. Characteristic energy for tearing, J. Polym. Sci., 10, 291-318 (1953)
[40] Shih, C. F.; Moran, B.; Nakamura, T., Energy release rate along a three-dimensional crack front in a thermally stressed body, Int. J. Fract., 30, 79-102 (1986)
[41] Stephenson, R. A., The equilibrium field near the tip of a crack for finite plane strain of incompressible elastic materials, J. Elasticity, 12, 65-99 (1982) · Zbl 0502.73079
[42] Sydney, G. A.; Matsumoto, E. A.; Nuzzo, R. G.; Mahadevan, L.; Lewis, J. A., Biomimetic 4D printing, Nat. Mater., 15, 413-418 (2016)
[43] Tarantino, A. M., Thin Hyperelastic sheets of compressible material: field equations, airy stress function and an application in fracture mechanics, J. Elasticity, 44, 37-59 (1996) · Zbl 0876.73013
[44] Triantafyllidis, N.; Abeyaratne, R., Instabilities of a finitely deformed fiber-reinforced elastic, Material. J. Appl. Mech., 50, 149-156 (1983) · Zbl 0511.73036
[45] Wang, Y.; Son, S.; Swartz, S. M.; Goulbourne, N. C., A mixed Von Mises distribution for modeling soft biological tissues with two distributed fiber properties, Int. J. Solid Struct., 49, 2914-2923 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.