×

Direct method to construct integrals for \(N\)th-order autonomous ordinary difference equations. (English) Zbl 1141.37025

Summary: A direct method to construct integrals for an \(N\)th-order autonomous ordinary difference equation (ODE): \(w_{n+N}=F(w_n,\dots ,w_{n+N - 1})\) is presented. As an illustration we first consider the third-order autonomous ODE \(w_{n+3}=F(w_n,w_{n+1},w_{n+2})\) and identify the forms of \(F\) for which two independent integrals exist. The effectiveness of the method to construct two or more integrals for fourth- and fifth-order ODEs is also demonstrated. The question of integrability of each of the identified difference equations with more than one integral is also discussed.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
39A12 Discrete version of topics in analysis
Full Text: DOI

References:

[1] STUD APPL MATH 55 pp 213– (1976) · Zbl 0338.35002 · doi:10.1002/sapm1976553213
[2] J MATH PHYS 17 pp 1011– (1976) · Zbl 0322.42014 · doi:10.1063/1.523009
[3] COMMUN MATH PHYS 204 pp 425– (1999) · Zbl 0987.37007 · doi:10.1007/s002200050652
[4] Physica. D 49 pp 273– (1991) · Zbl 0734.58023 · doi:10.1016/0167-2789(91)90149-4
[5] 272 pp 99– (1999) · doi:10.1016/S0378-4371(99)00094-1
[6] 289 pp 86– (2001) · Zbl 0971.37511 · doi:10.1016/S0378-4371(00)00314-9
[7] PHYS. LETT. A 155 pp 377– (1991) · doi:10.1016/0375-9601(91)91043-D
[8] J PHYS A 40 pp 5373– (2007) · Zbl 1113.37046 · doi:10.1088/1751-8113/40/20/009
[9] Grammaticos, Physical Review Letters 67 (14) pp 1825– (1991) · Zbl 0990.37518 · doi:10.1103/PhysRevLett.67.1825
[10] J PHYS A MATH GEN 38 pp 1L– (2005) · Zbl 1079.37054 · doi:10.1088/0305-4470/38/1/L01
[11] Physical Review Letters 81 pp 325– (1998) · doi:10.1103/PhysRevLett.81.325
[12] J PHYS A MATH GEN 34 pp 10377– (2001) · Zbl 0998.39010 · doi:10.1088/0305-4470/34/48/304
[13] J PHYS A MATH GEN 34 pp 10347– (2001) · Zbl 0987.35158 · doi:10.1088/0305-4470/34/48/301
[14] J MATH PHYS 45 pp 1191– (2004) · Zbl 1070.37039 · doi:10.1063/1.1640797
[15] J PHYS A MATH GEN 39 pp 1151– (2006) · Zbl 1092.39003 · doi:10.1088/0305-4470/39/5/009
[16] PHYS. LETT. A 126 pp 419– (1988) · Zbl 0679.58023 · doi:10.1016/0375-9601(88)90803-1
[17] Physica. D 34 pp 183– (1989) · Zbl 0679.58024 · doi:10.1016/0167-2789(89)90233-9
[18] 173 pp 243– (1991) · doi:10.1016/0378-4371(91)90258-E
[19] J PHYS A MATH GEN 38 pp 3965– (2005) · Zbl 1108.37042 · doi:10.1088/0305-4470/38/18/007
[20] J PHYS A MATH GEN 39 pp 605L– (2006) · Zbl 1370.37112 · doi:10.1088/0305-4470/39/42/L03
[21] J MATH PHYS 38 pp 1069– (1997) · Zbl 0877.39002 · doi:10.1063/1.531809
[22] PHYS. LETT. A 278 pp 319– (2001) · Zbl 1072.37509 · doi:10.1016/S0375-9601(00)00806-9
[23] RUSS MATH SURV 46 pp 1– (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.