×

Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system. (English) Zbl 1315.70009

Summary: Perturbation to Noether symmetries and adiabatic invariants of discrete nonholonomic nonconservative mechanical systems on an uniform lattice are investigated. Firstly, we review Noether symmetry and conservation laws of a nonholonomic nonconservative system. Secondly, we study continuous Noether symmetry of a discrete nonholonomic system, give the Noether symmetry criterion and theorem of discrete corresponding holonomic system and nonholonomic system. Thirdly, we study perturbation to Noether symmetry of the discrete nonholonomic nonconservative system, give the criterion of perturbation to Noether symmetry for this system, and based on the definition of adiabatic invariants, we construct the theorem which can lead to Noether adiabatic invariants for this system, and the forms of discrete Noether adiabatic invariants are given. Finally, we give an example to illustrate our results.

MSC:

70H11 Adiabatic invariants for problems in Hamiltonian and Lagrangian mechanics
70F25 Nonholonomic systems related to the dynamics of a system of particles
70H33 Symmetries and conservation laws, reverse symmetries, invariant manifolds and their bifurcations, reduction for problems in Hamiltonian and Lagrangian mechanics
Full Text: DOI

References:

[1] Maeda, S.: Canonical structure and symmetries for discrete systems. Math. Jpn. 25, 405–420 (1980) · Zbl 0446.70022
[2] Hydon, P.E.: Symmetries and first integral of ordinary difference equations. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci. 456, 2835 (2000) · Zbl 0991.39005 · doi:10.1098/rspa.2000.0643
[3] Levi, D., Tremblay, S., Winternitz, P.: Lie point symmetries of difference equations and lattices. J. Phys. A, Math. Gen. 33, 8507–8523 (2000) · Zbl 0966.39007 · doi:10.1088/0305-4470/33/47/313
[4] Levi, D., Winternitz, P.: Continuous symmetries of difference equations. J. Phys. A, Math. Gen. 39, R1–R63 (2006) · Zbl 1112.37053 · doi:10.1088/0305-4470/39/2/R01
[5] Levi, D., Winternitz, P., Yamilov, R.I.: Lie point symmetries of differential-difference equations. J. Phys. A, Math. Theor. 43, 292002 (2010) · Zbl 1197.35303
[6] Dorodnitsyn, V., Kozlov, R., Winternitz, P.: Continuous symmetries of Lagrangians and exact solutions of discrete equations. J. Math. Phys. 45, 336–359 (2004) · Zbl 1070.70010 · doi:10.1063/1.1625418
[7] Dorodnitsyn, V., Kozlov, R.: Invariance and first integrals of continuous and discrete Hamiltonian equations. J. Eng. Math. 66, 253–270 (2010) · Zbl 1188.70054 · doi:10.1007/s10665-009-9312-0
[8] Leyendecker, S., Marsden, J.E., Ortiz, M.: Variational integrators for constrained dynamical systems. Z. Angew. Math. Mech. 88, 677–708 (2008) · Zbl 1153.70004 · doi:10.1002/zamm.200700173
[9] McLachlan, R., Perlmutter, M.: Integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 16, 283–328 (2006) · Zbl 1104.37043 · doi:10.1007/s00332-005-0698-1
[10] Iglesias, D., Marrero, J.C., Diego, D.M., Martínez, E.: Discrete nonholonomic Lagrangian systems on Lie groupoids. J. Nonlinear Sci. 18, 221–276 (2008) · Zbl 1182.37036 · doi:10.1007/s00332-007-9012-8
[11] Liu, S.X., Liu, C., Guo, Y.X.: Geometric formulations and variational integrators of discrete autonomous Birkhoff systems. Chin. Phys. B 20, 034501 (2011)
[12] Fu, J.L., Chen, B.Y., Chen, L.Q.: Noether symmetries of discrete nonholonomic dynamical systems. Phys. Lett. A 373, 409–412 (2009) · Zbl 1227.70017 · doi:10.1016/j.physleta.2008.11.039
[13] Zhang, H.B., Lv, H.S., Gu, S.L.: The Lie point symmetry-preserving difference scheme of holonomic constrained mechanical systems. Acta Phys. Sin. 59, 5213–5218 (2010) (in Chinese)
[14] Zhao, Y.Y., Mei, F.X.: Symmetries and Invariants of Mechanical systems. Science Press, Beijing (1999) (in Chinese)
[15] Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: Perturbation methods in group analysis. J. Math. Sci. 55, 1450–1490 (1991) · Zbl 0759.35003 · doi:10.1007/BF01097534
[16] Baikov, V.A., Gazizov, R.K., Ibragimov, N.H.: Approximate transformation groups and deformations of symmetry Lie algebras. In: Ibragimov, N.H. (ed.) CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3. CRC Press, Boca Raton (1996)
[17] Kara, A.H., Mahomed, F.M., Ünal, G.: Approximate symmetries and conservation laws with applications. Int. J. Theor. Phys. 38, 2389–2399 (1999) · Zbl 0989.37076 · doi:10.1023/A:1026684004127
[18] Johnpillai, A.G., Kara, A.H.: A basis of approximate conservation laws for PDEs with a small parameter. Int. J. Non-Linear Mech. 41, 830–837 (2006) · Zbl 1160.35318 · doi:10.1016/j.ijnonlinmec.2006.04.009
[19] Wang, P., Fang, J.H., Wang, X.M.: Discussion on perturbation to weak Noether symmetry and adiabatic Invariants for Lagrange systems. Chin. Phys. Lett. 26, 034501 (2009) · doi:10.1016/j.physletb.2009.08.031
[20] Chen, X.W., Li, Y.M., Zhao, Y.H.: Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system. Phys. Lett. A 337, 274–278 (2005) · Zbl 1136.70321 · doi:10.1016/j.physleta.2005.01.087
[21] Zhang, Y., Fan, C.X., Mei, F.X.: Perturbation of symmetry and Hojman adiabatic invariants for Lagrange system. Acta Phys. Sin. 55, 3237–3240 (2006) (in Chinese) · Zbl 1202.70058
[22] Luo, S.K.: A new type of non-Noether adiabatic invariants, i.e. adiabatic invariants of Lutzky type, for Lagrange system. Acta Phys. Sin. 57, 5580–5586 (2007) (in Chinese) · Zbl 1150.70343
[23] Li, Z.J., Jiang, W.A., Luo, S.K.: Lie symmetries, symmetrical perturbation and a new adiabatic invariant for disturbed nonholonomic systems. Nonlinear Dyn. (2011). doi: 10.1007/s11071-011-9993-6 · Zbl 1316.70016
[24] Jiang, W.A., Luo, S.K.: A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems. Nonlinear Dyn. (2011). doi: 10.1007/s11071-011-9996-3 · Zbl 1312.70012
[25] Jiang, W.A., Li, L., Li, Z.J., Luo, S.K.: Lie symmetrical perturbation and a new type of non-Noether adiabatic invariants for disturbed generalized Birkhoffian systems. Nonlinear Dyn. (2011). doi: 10.1007/s11071-011-0051-1 · Zbl 1312.70011
[26] Xia, L.L., Li, Y.C.: Perturbation to symmetries and Hojman adiabatic invariants for nonholonomic controllable mechanical systems with non-Chetaev type constraints. Chin. Phys. 16, 1516–1520 (2007) · doi:10.1088/1009-1963/16/6/004
[27] Olver, P.: Applications of Lie Groups to Differential Equations. Springer, New York (1993) · Zbl 0785.58003
[28] Ibragimov, N.H.: Transformation Groups Applied to Mathematical Physics. Boston, Reidel (1985) · Zbl 0558.53040
[29] Bluman, G.W., Anco, S.C.: Symmetries and Integration Methods for Differential Equations. Springer, Berlin (2004) · Zbl 1013.34004
[30] Mei, F.X.: Nonholonomic mechanics. Appl. Mech. Rev. 53(11), 283–306 (2000) · doi:10.1115/1.3097331
[31] Mei, F.X.: Symmetries and Conserved Quantities of Constrained Mechanical Systems. Beijing Institute of Technology Press, Beijing (2004) (in Chinese)
[32] Guo, Y.X., Jiang, L.Y., Yu, Y.: Symmetries of mechanical systems with nonlinear nonholonomic constraints. Chin. Phys. 10, 181 (2001) · doi:10.1088/1009-1963/10/3/302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.