×

Algebraic entropy of (integrable) lattice equations and their reductions. (English) Zbl 1410.39016

Summary: We study the growth of degrees in many autonomous and non-autonomous lattice equations defined by quad rules with corner boundary values, some of which are known to be integrable by other characterisations. Subject to an enabling conjecture, we prove polynomial growth for a large class of equations which includes the Adler-Bobenko-Suris equations and Viallet’s \(Q_{\mathrm V}\) and its non-autonomous generalization. Our technique is to determine the ambient degree growth of the projective version of the lattice equations and to conjecture the growth of their common factors at each lattice vertex, allowing the true degree growth to be found. The resulting degrees satisfy a linear partial difference equation which is universal, i.e. the same for all the integrable lattice equations considered. When we take periodic reductions of these equations, which includes staircase initial conditions, we obtain from this linear partial difference equation an ordinary difference equation for degrees that implies quadratic or linear degree growth. We also study growth of degree of several non-integrable lattice equations. Exponential growth of degrees of these equations, and their mapping reductions, is also proved subject to a conjecture.

MSC:

39A14 Partial difference equations
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
65Q10 Numerical methods for difference equations
28D20 Entropy and other invariants

References:

[1] Adler V E 2011 On a discrete analog of the Tzitzeica equation (arXiv:1103.5139)
[2] Adler V, Bobenko A and Suris Y 2003 Classification of integrable equations on quad-graphs. The consistency approach Commun. Math. Phys.3 513-43 · Zbl 1075.37022 · doi:10.1007/s00220-002-0762-8
[3] Adler V, Bobenko A and Suris Y 2009 Discrete nonlinear hyperbolic equations. Classification of integrable cases Funct. Anal. Appl.43 3-17 · Zbl 1271.37048 · doi:10.1007/s10688-009-0002-5
[4] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform(SIAM Studies in Applied Mathematics vol 4) (Philadelphia, PA: SIAM) · Zbl 0472.35002 · doi:10.1137/1.9781611970883
[5] Arnol’d V I 1990 Dynamics of complexity of intersections Boletim Sociedade Bras. Mat.21 1-10 · Zbl 0782.54020 · doi:10.1007/BF01236277
[6] Bazhanov V V, Kels A P and Sergeev S M 2016 Quasi-classical expansion of the star-triangle relation and integrable systems on quad-graphs J. Phys. A: Math. Theor.49 464001 · Zbl 1352.37175 · doi:10.1088/1751-8113/49/46/464001
[7] Bellon M P and Viallet C-M 1999 Algebraic entropy Commun. Math. Phys.204 425-37 · Zbl 0987.37007 · doi:10.1007/s002200050652
[8] Blanc J and Cantat S 2016 Dynamical degrees of birational transformations of projective surfaces J. Am. Math. Soc.29 415-71 · Zbl 1394.14011 · doi:10.1090/jams831
[9] Dobrushkin V A 2010 Methods in Algorithmic Analysis(Computer and Information Science Series) (Boca Raton, FL: CRC Press) · Zbl 1191.68894
[10] Grammaticos B, Halburd R G, Ramani A and Viallet C-M 2009 How to detect the integrability of discrete systems J. Phys. A: Math. Theor.42 454002 · Zbl 1183.37001 · doi:10.1088/1751-8113/42/45/454002
[11] Grammaticos B and Ramani A 2010 Singularity confinement property for the (non-autonomous) Adler-Bobenko-Suris integrable lattice equations Lett. Math. Phys.92 33-45 · Zbl 1190.37064 · doi:10.1007/s11005-010-0378-4
[12] Gubbiotti G, Christian S and Levi D 2017 A two-periodic generalization of the QV equation J. Integrable Syst.2 1-13 · Zbl 1398.39007 · doi:10.1093/integr/xyx004
[13] Halburd R G 2005 Diophantine integrability J. Phys. A: Math. Gen.38 L263-9 · Zbl 1076.39013 · doi:10.1088/0305-4470/38/16/L01
[14] Hasselblatt B and Propp J 2007 Degree-growth of monomial maps Ergod. Theor. Dynam. Syst.27 1375-97 · Zbl 1143.37032 · doi:10.1017/S0143385707000168
[15] Hietarinta J, Joshi N and Nijhoff F W 2016 Discrete Systems and Integrability (Cambridge: Cambridge University Press) · Zbl 1362.37130 · doi:10.1017/CBO9781107337411
[16] Hietarinta J and Viallet C 1998 Singularity confinement and chaos in discrete systems Phys. Rev. Lett.81 325-8 · doi:10.1103/PhysRevLett.81.325
[17] Hietarinta J and Viallet C 2007 Searching for integrable lattice maps using factorization J. Phys. A: Math. Theor.40 12629-43 · Zbl 1155.35463 · doi:10.1088/1751-8113/40/42/S09
[18] Hietarinta J and Viallet C 2012 Weak Lax pairs for lattice equations Nonlinearity25 1955-66 · Zbl 1267.37074 · doi:10.1088/0951-7715/25/7/1955
[19] Hirota R and Tsujimoto S 1995 Conserved quantities of a class of nonlinear difference – difference equations J. Phys. Soc. Japan64 3125-7 · Zbl 0972.39501 · doi:10.1143/JPSJ.64.3125
[20] Hydon P E and Viallet C M 2010 Asymmetric integrable quad-graph equations Appl. Anal.89 493-506 · Zbl 1188.37059 · doi:10.1080/00036810903329951
[21] Kajiwara K and Ohta Y 2008 Bilinearization and Casorati determinant solution to the non-autonomous disrete KdV equation J. Phys. Soc. Japan77 054004 · doi:10.1143/JPSJ.77.054004
[22] Kanki M, Mada J, Mase T and Tokihiro T 2014 Irreducibility and co-primeness as an integrability criterion for discrete equations J. Phys. A: Math. Theor.47 465204 · Zbl 1311.39009 · doi:10.1088/1751-8113/47/46/465204
[23] Kanki M, Mase T and Tokihiro T 2015 Algebraic entropy for an extended Hietarinta-Viallet equation J. Phys. A: Math. Theor.48 355202 · Zbl 1353.37131 · doi:10.1088/1751-8113/48/35/355202
[24] Levi D and Yamilov R I 2009 The generalized symmetry method for discrete equations J. Phys. A: Math. Theor.42 454012 · Zbl 1180.37093 · doi:10.1088/1751-8113/42/45/454012
[25] Levi D and Yamilov R I 2009 On a nonlinear integrable difference equation on the square 3D-inconsistent (arXiv:0902.2126) · Zbl 1240.39020
[26] Mikhailov A V and Xenitidis P 2013 Second order integrability conditions for difference equations: an integrable equation Lett. Math. Phys.104 1-20
[27] Nijhoff F and Capel H 1995 The discrete Korteweg – de Vries equation Acta Appl. Math.39 133-58 · Zbl 0841.58034 · doi:10.1007/BF00994631
[28] Ormerod C M, van der Kamp P H, Hietarinta J and Quispel G R W 2014 Twisted reductions of integrable lattice equations, and their Lax representations Nonlinearity27 1367 · Zbl 1291.39024 · doi:10.1088/0951-7715/27/6/1367
[29] Ramani A, Grammaticos B, Satsuma J and Willox R 2009 On two (not so) new integrable partial difference equations J. Phys. A: Math. Theor.42 282002 · Zbl 1172.35509 · doi:10.1088/1751-8113/42/28/282002
[30] Ramani A, Grammaticos B, Willox R and Mase T 2017 Calculating algebraic entropies: an express method J. Phys. A.: Math. Theor.50 185203 · Zbl 1390.81106 · doi:10.1088/1751-8121/aa66d7
[31] Roberts J A G and Tran D T 2015 Signatures over finite fields of growth properties for lattice equations J. Phys. A: Math. Theor.48 085201 · Zbl 1369.37077 · doi:10.1088/1751-8113/48/8/085201
[32] Roberts J A G and Tran D T 2014 Towards some exact results for the (vanishing) algebraic entropy of (integrable) lattice equations (in preparation)
[33] Sahadevan R and Capel H W 2003 Complete integrability and singularity confinement of nonautonomous modified Korteweg – de Vries and sine Gordon mappings Physica A 330 373-90 · Zbl 1029.37043 · doi:10.1016/j.physa.2003.09.020
[34] Sahadevan R and Nagavigneshwari G 2013 New integrable and linearizable nonlinear difference equations J. Nonlinear Math. Phys.20 179-90 · Zbl 1420.39007 · doi:10.1080/14029251.2013.805563
[35] Sahadevan R, Rasin O G and Hydon P E 2007 Integrability conditions for nonautonomous quad-graph equations J. Math. Anal. Appl.331 712-26 · Zbl 1119.35079 · doi:10.1016/j.jmaa.2006.09.026
[36] Shi Y, Zhang D J and Zhao S L 2014 Solutions to the non-autonomous ABS lattice equations: casoratians and bilinearization Sci. Sin. Math.44 37 · Zbl 1488.35468 · doi:10.1360/012013-202
[37] Spicer P E, Nijhoff F W and van der Kamp P H 2011 Higher analogues of the discrete-time Toda equation and the quotient-difference algorithm Nonlinearity24 2229 · Zbl 1223.37088 · doi:10.1088/0951-7715/24/8/006
[38] Tran D T and Roberts J A G 2017 Linear degree growth in lattice equations (arXiv:1702.08295)
[39] Tremblay S, Grammaticos B and Ramani A 2001 Integrable lattice equations and their growth properties Phys. Lett. A 278 319-24 · Zbl 1072.37509 · doi:10.1016/S0375-9601(00)00806-9
[40] van der Kamp P H 2012 Growth of degrees of integrable mapping J. Difference Equ. Appl.18 447-60 · Zbl 1238.39003 · doi:10.1080/10236198.2010.510137
[41] Veselov A 1992 Growth and integrability in the dynamics of mappings Commun. Math. Phys.145 181-93 · Zbl 0751.58034 · doi:10.1007/BF02099285
[42] Viallet C 2006 Algebraic entropy for lattice equations (arXiv:math-ph/0609043)
[43] Viallet C M 2009 Integrable lattice maps: QV, a rational version of Q4 Glasgow Math. J.51 157-63 · Zbl 1162.37330 · doi:10.1017/S0017089508004874
[44] Viallet C M 2015 On the algebraic structure of rational discrete dynamical systems J. Phys. A: Math. Theor.48 16FT01 · Zbl 1320.26014 · doi:10.1088/1751-8113/48/16/16FT01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.