×

Quantum calculus approach to the dual bicomplex Fibonacci and Lucas numbers. (English) Zbl 1513.11048

Summary: Quantum calculus, which arises in the mathematical fields of combinatorics and special functions as well as in a number of areas, involving the study of fractals and multi-fractal measures, and expressions for the entropy of chaotic dynamical systems, has attracted the attention of many researchers in recent years. In this paper, by virtue of some useful notations from \(q\)-calculus, we define the \(q\)-Fibonacci dual bicomplex numbers and \(q\)-Lucas dual bicomplex numbers with a different perspective. Afterwards, we give the Binet formulas, binomial sums, exponential generating functions, Catalan identities, Cassini identities, d’Ocagne identities and some algebraic properties for the \(q\)-Fibonacci dual bicomplex numbers and \(q\)-Lucas dual bicomplex numbers.

MSC:

11B39 Fibonacci and Lucas numbers and polynomials and generalizations
05A15 Exact enumeration problems, generating functions
Full Text: DOI

References:

[1] I. Akkus and G. Kizilaslan, Quaternions: Quantum calculus ap-proach with applications, Kuwait Journal of Science, volume 46 (2019), no. 4. · Zbl 1463.11031
[2] E. Ata and Y. Yayli, Dual unitary matrices and unit dual quater-nions, Differential Geometry-Dynamical Systems, volume 10 (2008), 1-12. · Zbl 1162.15010
[3] F. Babadag, Fibonacci, Lucas numbers with dual bicomplex num-bers, Journal of Informatics and Mathematical Sciences, volume 10 (2018), no. 1-2, 161-172.
[4] G. Bilgici, Two generalizations of lucas sequence, Applied Mathe-matics and Computation, volume 245 (2014), 526-538. · Zbl 1335.40002
[5] P. Catarino and P. Vasco, On dual k−Pell quaternions and octo-nions, Mediterranean Journal of Mathematics, volume 14 (2017), no. 2, 75. · Zbl 1402.11022
[6] W. K. Clifford, Preliminary sketch of biquaternions, Proc. Lond. Math. Soc, volume 4 (1882), 381-395. · JFM 05.0280.01
[7] M. Edson and O. Yayenie, A new generalization of Fibonacci se-quence & extended binet’s formula, Integers, volume 9 (2009), no. 6, 639-654. · Zbl 1248.11009
[8] P. Fjelstad and S. G. Gal, n−dimensional dual complex numbers, Advances in Applied Clifford Algebras, volume 8 (1998), no. 2, 309-322. · Zbl 0921.30001
[9] S. Halici, On bicomplex Fibonacci numbers and their generaliza-tion, in Models and Theories in Social Systems, pages 509-524, Springer, 2019.
[10] S. Halici and A. Karataş, Bicomplex Lucas and Horadam numbers, arXiv preprint arXiv:1806.05038, (2018).
[11] M. Kaabar, Novel methods for solving the conformable wave equa-tion, Journal of New Theory, (2020), no. 31, 56-85.
[12] V. Kac and P. Cheung, Quantum calculus, Springer Science & Busi-ness Media, 2001.
[13] A. Khalili Golmankhaneh, K. K. Ali, R. Yilmazer and M. K. A. Kaabar, Local fractal fourier transform and applications, Compu-tational Methods for Differential Equations, (2021).
[14] A. Khalili Golmankhaneh, K. K Ali, R. Yilmazer and M. KA Kaabar, Economic models involving time fractal, Journal of Mathematics and Modeling in Finance, volume 1 (2021), no. 1, 159-178.
[15] C. Kızılateş, A new generalization of Fibonacci hybrid and Lucas hybrid numbers, Chaos, Solitons & Fractals, volume 130 (2020), 109449. · Zbl 1489.11029
[16] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, 2001. · Zbl 0984.11010
[17] A. Kotelnikov, Screw calculus and some applications to geometry and mechanics, Annals of the Imperial University of Kazan, vol-ume 24 (1895).
[18] M. Luna-Elizarraras, M. Shapiro, D. C. Struppa and A. Vajiac, Bi-complex numbers and their elementary functions, Cubo (Temuco), volume 14 (2012), no. 2, 61-80. · Zbl 1253.30070
[19] G. Matsuda, S. Kaji and H. Ochiai, Anti-commutative dual com-plex numbers and 2d rigid transformation, in Mathematical Progress in Expressive Image Synthesis I, pages 131-138, Springer, 2014.
[20] F. Messelmi, Dual-complex numbers and their holomorphic func-tions, hal-01114178f, 2015.
[21] S. Nurkan et al., A note on bicomplex Fibonacci and Lucas num-bers, International Journal of Pure and Applied Mathematics, vol-ume 120 (2018), no. 3, 365-377.
[22] S. Rezapour, A. Imran, A. Hussain, F. Martínez, S. Etemad and M. K. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference fbvps, Symmetry, volume 13 (2021), no. 3, 469.
[23] D. Rochon, A generalized Mandelbrot set for bicomplex numbers, Fractals, volume 8 (2000), no. 04, 355-368. · Zbl 0969.37021
[24] D. Rochon and M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Anal. Univ. Oradea, fasc. math, volume 11 (2004), no. 71, 110. · Zbl 1114.11033
[25] D. Rochon and S. Tremblay, Bicomplex quantum mechanics: I. the generalized schrödinger equation, Advances in Applied Clifford Algebras, volume 14 (2004), no. 2, 231-248. · Zbl 1169.81339
[26] D. Rochon and S. Tremblay, Bicomplex quantum mechanics: Ii. the hilbert space, Advances in Applied Clifford Algebras, volume 16 (2006), no. 2, 135-157. · Zbl 1142.81010
[27] E. Study, Geometrie der dynamen, BG Teubner Leipzig, 1903. · JFM 34.0741.10
[28] Y. Yazlik, S. Köme and C. Köme, Bicomplex generalized k−Horadam quaternions, Miskolc Mathematical Notes, volume 20 (2019), no. 2, 1315-1330. · Zbl 1449.11037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.