×

On a boundary value problem for a class of generalized analytic functions. (English) Zbl 1262.30049

Almeida, Alexandre (ed.) et al., Advances in harmonic analysis and operator theory. The Stefan Samko anniversary volume on the occasion of his 70th birthday. Mainly based on the presentations at two conferences, Lisbon and Aveiro, Portugal, in June – July, 2011. Basel: Birkhäuser (ISBN 978-3-0348-0515-5/hbk; 978-3-0348-0516-2/ebook). Operator Theory: Advances and Applications 229, 91-99 (2013).
Summary: For solutions of the Bers-Vekua equation \(Dv:=v\bar{z}-c(z,\bar{z})\bar{v}=0\) defined in a domain \(\mathbb D\subset \mathbb C\) we consider Riemann-Hilbert type boundary conditions.
In the case of the existence of certain differential operators with which all the solutions of \(Dv = 0\) defined in \(\mathbb D\) can be generated from a function \(f\) holomorphic in \(\mathbb D\) the boundary value problem is reduced to a Goursat problem for \(f\) in essence. For certain classes of coefficients \(c\) and domains \(\mathbb D\) we show how this problem can be solved explicitly.
For the poly-pseudoanalytic functions obeying the differential equation \(D^nv=0\), \(n\in\mathbb N\), we investigate an appropriate boundary value problem and show the equivalence of this problem to \( n \) boundary value problems for generalized analytic functions.
For the entire collection see [Zbl 1258.00012].

MSC:

30G20 Generalizations of Bers and Vekua type (pseudoanalytic, \(p\)-analytic, etc.)
35F15 Boundary value problems for linear first-order PDEs
Full Text: DOI

References:

[1] M.B. Balk, Polyanalytic Functions. Mathematical Research 63, Akademie-Verlag, 1991. · Zbl 0729.30039
[2] K.W. Bauer, S. Ruscheweyh, Differential Operators for Partial Differential Equations. Lecture Notes in Math. 792, Springer, 1980. · Zbl 0439.30035
[3] Bauer, KW, Bestimmung und Anwendung von Vekua-Resolventen, Monatsh. Math., 85, 89-97 (1977) · Zbl 0376.35008 · doi:10.1007/BF01297538
[4] Bauer, KW, Differentialoperatoren bei verallgemeinerten Euler-Gleichungen, Ber. Math.-Statist. Sekt. Forsch. Graz, 121, 1-17 (1979) · Zbl 0434.34005
[5] K.W. Bauer, Determination and application of Vekua resolvents. In: R. Conti (ed.), Recent advances in differential equations, 37-43, Academic Press, 1981. · Zbl 0601.30052
[6] Berglez, P., Differentialoperatoren bei partiellen Differentialgleichungen, Ann. Mat. Pura Appl., 143, 155-185 (1984) · Zbl 0607.35054 · doi:10.1007/BF01769214
[7] P. Berglez, On the solutions of the iterated Bers-Vekua equation. In: H. Florian et al. (eds.), Functional-Analytic and Complex Methods, their Interactions, and Applications to Partial Differential Equations, 266-275, World Scientific, 2001. · Zbl 1043.30027
[8] L. Bers, Theory of Pseudo-Analytic Functions. New York University, 1953. · Zbl 0051.31603
[9] Castillo Perez, R.; Kravchenko, VV; Reséndiz Vázquez, R., Solution of boundary and eigenvalue problems for second-order elliptic operators in the plane using pseudoanalytic formal powers, Math. Methods Appl. Sci., 34, 455-468 (2011) · Zbl 1210.35054
[10] B. Doyon, P. Fonseca, Ising field theory on a pseudosphere. J. Stat. Mech. Theory Exp. P07002 (2004), arXiv:hep-th/0404136v1. · Zbl 1076.82008
[11] Heersink, R., Über Lösungsdarstellungen und funktionentheoretische Methoden bei elliptischen Differentialgleichungen, Ber. Math.-Statist. Sekt. Forsch. Graz, 67, 1-79 (1976) · Zbl 0343.35020
[12] Jancovici, B.; Téllez, G., Two-dimensional Coulomb systems on a surface of constant negative curvature, J. Stat. Phys., 91, 953-977 (1998) · Zbl 0946.82014 · doi:10.1023/A:1023079916489
[13] V.V. Kravchenko, Applied Pseudoanalytic Function Theory, Birkhäuser, 2009. · Zbl 1182.30002
[14] Kravchenko, VV; Tremblay, S., Spatial pseudoanalytic functions arising from the factorization of linear second-order elliptic operators, Math. Methods Appl. Sci., 34, 1999-2010 (2011) · Zbl 1242.30039 · doi:10.1002/mma.1500
[15] Ku, M.; Wang, D.; Dong, L., Solutions to polynomial generalized Bers-Vekua equations in Clifford analysis, Complex Anal. Oper. Theory, 6, 407-424 (2012) · Zbl 1275.30021 · doi:10.1007/s11785-011-0131-8
[16] Palmer, J.; Beatty, M.; Tracy, C. A., Tauf unctions for the Dirac operator on the Poincaré disk, Commun. Math. Phys., 165, 97-173 (1994) · Zbl 0812.35112
[17] A.Y. Timofeev, Dirichlet problem for generalized Cauchy-Riemann systems with a singular point. In: G. Giorgadze (ed.), Recent Developments in Generalized Analytic Functions and Their Applications: Proceedings of the International Conference on Generalized Analytic Functions and Their Applications, Tbilisi, 2011.
[18] I.N. Vekua, Generalized Analytic Functions. Pergamon, 1962. · Zbl 0100.07603
[19] I.N. Vekua, New methods for solving elliptic equations. North-Holland, 1967. · Zbl 0146.34301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.