×

A flexible INAR(1) time series model with dependent zero-inflated count series and medical contagious cases. (English) Zbl 1540.62115

Summary: In order to understand the behavior of disease transmission and develop better policies to overcome the problem, time series modeling and forecasting of infectious diseases are crucial. Therefore, a flexible INAR(1) time series model based on dependent zero-inflated count series is proposed. A flexible discrete distribution is considered for innovation terms of the process with some interesting behavior. Some statistical properties of the proposed INAR(1) time series model are provided, and its interpretation of contagious diseases is represented. The unknown parameters of the proposed process are estimated through several estimation methods. The efficiency of the estimates is evaluated by the Monte Carlo simulation approach. Fitting, modeling and analyzing some recent contagious cases are investigated, namely the weekly counts of Hantavirus, Chickenpox and Tuberculosis diseases. The earlier data sets forecasts are investigated under coherent procedures, including the median and modified Sieve bootstrap approaches.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F10 Point estimation
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] Al-Osh, M. A.; Aly, E. E.A. A., First order autoregressive time series with negative binomial and geometric marginals, Comm. Statist. Theory Methods, 21, 2483-2492 (1992) · Zbl 0775.62225
[2] Al-Osh, M. A.; Alzaid, A. A., First-order integer-valued autoregressive (INAR(1)) process, J. Time Series Anal., 8, 261-275 (1987) · Zbl 0617.62096
[3] Alzaid, A. A.; Al-Osh, M. A., First-order integer-valued autoregressive (INAR(1)) process: distributional and regression properties, Stat. Neerlandica, 42, 53-61 (1988) · Zbl 0647.62086
[4] Alzaid, A. A.; Al-Osh, M. A., Some autoregressive moving average processes with generalized Poisson marginal distributions, Ann. Inst. Statist. Math., 45, 223-232 (1993) · Zbl 0777.62085
[5] Bakouch, H. S.; Mohammadpour, M.; Shirozhan, M., A zero-inflated geometric INAR(1) process with random coefficient, Appl. Math., 63, 1, 79-105 (2018) · Zbl 1458.62195
[6] Bermúdez, L.; Dimitris, A. K., Multivariate INAR(1) regression models based on the sarmanov distribution, Mathematics, 9, 5, 505 (2021)
[7] Borges, P.; Bourguignon, M.; Molinares, F. F., A generalized NGINAR(1) process with inflated parameter geometric counting series, Australian New Zealand J. Stat., 59, 137-150 (2017) · Zbl 1373.62443
[8] Borges, P.; Molinares, F. F.; Bourguignon, M., A geometric time series model with inflated parameter Bernoulli counting series, Statist. Probab. Lett., 119, 264-272 (2016) · Zbl 1398.62222
[9] Eliwa, M. S.; El-Morshedy, M., A one-parameter discrete distribution for over-dispersed data: statistical and reliability properties with applications, J. Appl. Stat., 49, 10, 2467-2487 (2022) · Zbl 07563008
[10] Guerrero, M. B.; Barreto-Souza, W.; Ombao, H., Integer-valued autoregressive processes with prespecified marginal and innovation distributions: a novel perspective, Stoch. Models, 38, 1, 70-90 (2022) · Zbl 1493.62525
[11] Harvey, A. C.; Fernandes, C., Time series models for count or qualitative observations, J. Bus. Econom. Statist., 7, 4, 407-417 (1989)
[12] Homburg, A.; Weiß, C. H.; Alwan, L. C.; Frahm, G.; Göb, R., Evaluating approximate point forecasting of count processes, Econometrics, MDPI, 7, 3, 1-28 (2019)
[13] Jung, R. C.; Tremayne, A. R., Coherent forecasting in integer time series models, Int. J. Forecast., 2, 223-238 (2006)
[14] Jung, R. C.; Tremayne, A. R., Convolution-closed models for count time series with applications, J. Time Series Anal., 32, 3, 268-280 (2011) · Zbl 1290.62078
[15] Karlsen, H.; Tjostheim, D., Consistent estimates for the NEAR(2) and NLAR(2) time series models, J. R. Stat. Soc. Ser. B Stat. Methodol., 50, 2, 313-320 (1988)
[16] Maiti, R.; Biswas, A., Coherent forecasting for over-dispersed time series of count data, Braz. J. Probab. Stat., 29, 4, 747-766 (2015) · Zbl 1332.62361
[17] Miletić Ilić, A. V., A geometric time series model with a new dependent Bernoulli counting series, Comm. Statist. Theory Methods, 45, 6400-6415 (2016) · Zbl 1349.62406
[18] Nastić, A. S.; Ristić, M. M.; Miletić Ilić, A. V., A geometric time series model with an alternative dependent Bernoulli counting series, Comm. Statist. Theory Methods, 46, 2, 770-785 (2017) · Zbl 1369.62232
[19] Pascual, L.; Romo, J.; Ruiz, E., Bootstrap predictive inference for ARIMA processes, J. Time Series Anal., 25, 4, 449-465 (2004) · Zbl 1062.62199
[20] Qi, X.; Li, Q.; Zhu, F., Modeling time series of count with excess zeros and ones based on INAR(1) model with zero-and-one inflated Poisson innovations, J. Comput. Appl. Math., 346, 572-590 (2019) · Zbl 1405.62119
[21] Qin, J.; Lawless, J., Empirical likelihood and general estimating equations, Ann. Statist., 22, 1, 300-325 (1994) · Zbl 0799.62049
[22] Ristić, M. M.; Bakouch, H. S.; Nastić, A. S., A new geometric first-order integer-valued autoregressive (NGINAR(1)) process, J. Statist. Plann. Inference, 139, 2218-2226 (2009) · Zbl 1160.62083
[23] Ristić, M. M.; Nastić, S. A.; Miletić Ilić, V. A., A geometric time series model with dependent Bernoulli counting series, J. Time Series Anal., 34, 4, 423-516 (2013) · Zbl 1275.62068
[24] Shamma, N.; Mohammadpour, M.; Shirozhan, M., A time series model based on dependent zero inflated counting series, Comput. Statist., 35, 1737-1757 (2020) · Zbl 1505.62367
[25] Shirozhan, M.; Mohammadpour, M.; Bakouch, H. S., A new geometric INAR(1) model with mixing pegram and generalized binomial thinning operators, Iran. J. Sci. Technol. Trans. A Sci., 43, 1011-1020 (2019)
[26] Tian, S.; Wang, D.; Cui, S., A seasonal geometric INAR(1) process based on negative binomial thinning operator, Statist. Papers, 61, 2561-2581 (2020) · Zbl 1467.62150
[27] Weiß, C. H., Thinning operations for modeling time series of count-a survey, AStA Adv. Stat. Anal., 92, 319-341 (2008) · Zbl 1477.62256
[28] Weiß, C. H., An Introduction to Discrete-Valued Time Series (2018), John Wiley and Sons, Inc. Chichester · Zbl 1407.62009
[29] Xu, X.; Wang, D.; Zhao, Z., Interval estimation of random coefficient integer-valued autoregressive model based on mean empirical likelihood method, Math. Probl. Eng. Hindawi, 2021, 1-11 (2021) · Zbl 1512.62082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.