×

The \(\mathcal{L}_B\)-cohomology on compact torsion-free \(\mathrm{G}_2\) manifolds and an application to ‘almost’ formality. (English) Zbl 1505.53036

Summary: We study a cohomology theory \(H^\bullet_\varphi\), which we call the \(\mathcal{L}_B\)-cohomology, on compact torsion-free \(\mathrm{G}_2\) manifolds. We show that \(H^k_\varphi \cong H^k_{\mathrm{dR}}\) for \(k \neq 3, 4\), but that \(H^k_\varphi\) is infinite-dimensional for \(k = 3,4\). Nevertheless, there is a canonical injection \(H^k_{\mathrm{dR}} \rightarrow H^k_\varphi\). The \(\mathcal{L}_B\)-cohomology also satisfies a Poincaré duality induced by the Hodge star. The establishment of these results requires a delicate analysis of the interplay between the exterior derivative \(\mathrm{d}\) and the derivation \(\mathcal{L}_B\) and uses both Hodge theory and the special properties of \(\mathrm{G}_2\)-structures in an essential way. As an application of our results, we prove that compact torsion-free \(\mathrm{G}_2\) manifolds are ‘almost formal’ in the sense that most of the Massey triple products necessarily must vanish.

MSC:

53C10 \(G\)-structures
57R19 Algebraic topology on manifolds and differential topology
53C29 Issues of holonomy in differential geometry
58A12 de Rham theory in global analysis

References:

[1] Besse, A.L.: Einstein Manifolds. Springer, New York (1987) · Zbl 0613.53001 · doi:10.1007/978-3-540-74311-8
[2] Bryant, R.L.: Some remarks on \[{\rm G}_2\] G2-structures. In: Proceedings of Gökova Geometry-Topology Conference 2005, pp. 75-109. arXiv:math/0305124 · Zbl 1115.53018
[3] Cavalcanti, G.: New aspects of the \[dd^c\] ddc lemma. Ph.D. Thesis. http://www.staff.science.uu.nl/ caval101/homepage/Research_files/thesis.pdf. Accessed 15 Nov 2017
[4] Chan, K.F., Karigiannis, S., Tsang, C.C.: Cohomologies on almost complex manifolds and the \[{\partial }{\overline{\partial }} \]∂∂¯-lemma. Preprint arXiv:1710.04695 · Zbl 1472.32012
[5] Crowley, D., Nordström, J.: The rational homotopy type of \[(n-1)\](n-1)-connected manifolds of dimension up to \[5n-35\] n-3. Preprint arXiv:1505.04184v2 · Zbl 1458.55007
[6] de la Ossa, X., Karigiannis, S., Svanes, E.: Geometry of \[{\rm U}{m}\] Um-structures: Kähler identities, the \[\text{dd}^{{\rm c}}\] ddc lemma, and Hodge theory (in preparation)
[7] Fernández, M., Gray, A.: Riemannian manifolds with structure group \[{\rm G}_2\] G2. Ann. Mat. Pura Appl. 32, 19-45 (1982) · Zbl 0524.53023 · doi:10.1007/BF01760975
[8] Gompf, R.E., Stipsicz, A.\[I.: 44\]-Manifolds and Kirby Calculus. American Mathematical Society, Providence (1999) · Zbl 0933.57020 · doi:10.1090/gsm/020
[9] Harvey, R., Lawson, H.B.: Calibrated geometries. Acta Math. 148, 47-157 (1982) · Zbl 0584.53021 · doi:10.1007/BF02392726
[10] Huybrechts, D.: Complex Geometry, Universitext. Springer, Berlin (2005) · Zbl 1055.14001
[11] Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford University Press, Oxford (2000) · Zbl 1027.53052
[12] Karigiannis, S.: Flows of \[{\rm G}_2\] G2-structures, I. Q. J. Math. 60, 487-522 (2009). arXiv:math.DG/0702077 · Zbl 1190.53025 · doi:10.1093/qmath/han020
[13] Karigiannis, S.: Some notes on \[{\rm G}_2\] G2 and \[{\rm Spin}{7}\] Spin7 geometry. In: Recent Advances in Geometric Analysis; Advanced Lectures in Mathematics, vol. 11, pp. 129-146. International Press. arxiv:math/0608618 (2010) · Zbl 1248.53040
[14] Karigiannis, S.: Geometry of \[{\rm G}_2\] G2-structures (in preparation) · Zbl 1091.53026
[15] Karigiannis, S., Lin, C., Loftin, J.: Octonionic – algebraic structure and curvature of the Teichmüller space of \[{\rm G}_2\] G2 manifolds (in preparation)
[16] Kawai, K., Lê, H.V., Schwachhöfer, L.: The Frölicher-Nijenhuis bracket and the geometry of \[{\rm G}_2\] G2- and \[{\rm Spin}{7}\] Spin7-manifolds. L. Ann. Mat. (2017). https://doi.org/10.1007/s10231-017-0685-9 · Zbl 1386.53052 · doi:10.1007/s10231-017-0685-9
[17] Kawai, K., Lê, H.V., Schwachhöfer, L.: Frölicher-Nijenhuis cohomology on \[{\rm G}_2\] G2- and \[{\rm Spin}{7}\] Spin7-manifolds. arXiv:1703.05133
[18] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer, Berlin (1993) · Zbl 0782.53013 · doi:10.1007/978-3-662-02950-3
[19] Lawson, H.B., Michelsohn, M.L.: Spin Geometry. Princeton University Press, Princeton (1989) · Zbl 0688.57001
[20] Munoz, V., Tralle, A.: Simply-connected K-contact and Sasakian manifolds of dimension 7. Preprint arXiv:1408.2496 · Zbl 1432.53066
[21] Scorpan, A.L.: The Wild World of 4-manifolds. American Mathematical Society, Providence (2005) · Zbl 1075.57001
[22] Verbitsky, M.: Manifolds with parallel differential forms and Kähler identities for \[{\rm G}_2\] G2 manifolds. J. Geom. Phys. 61, 1001-1016 (2011). arXiv:math/0502540v8 · Zbl 1214.58002 · doi:10.1016/j.geomphys.2011.01.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.