×

Estimating the effectiveness of permanent price reductions for competing products using multivariate Bayesian structural time series models. (English) Zbl 1498.62312

Summary: The Florence branch of an Italian supermarket chain recently implemented a strategy that permanently lowered the price of numerous store brands in several product categories. To quantify the impact of such a policy change, researchers often use synthetic control methods for estimating causal effects when a subset of units receive a single persistent treatment and the rest are unaffected by the change. In our applications, however, competitor brands not assigned to treatment are likely impacted by the intervention because of substitution effects; more broadly, this type of interference occurs whenever the treatment assignment of one unit affects the outcome of another. This paper extends the synthetic control methods to accommodate partial interference, allowing interference within predefined groups but not between them. Focusing on a class of causal estimands that capture the effect both on the treated and control units, we develop a multivariate Bayesian structural time series model for generating synthetic controls that would have occurred in the absence of an intervention, enabling us to estimate our novel effects. In a simulation study we explore our Bayesian procedures’ empirical properties and show that it achieves good frequentists coverage, even when the model is misspecified. We use our new methodology to make causal statements about the impact on sales of the affected store brands and their direct competitors. Our proposed approach is implemented in the CausalMBSTS R package.

MSC:

62P20 Applications of statistics to economics
62F15 Bayesian inference
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
91B84 Economic time series analysis

References:

[1] ABADIE, A., DIAMOND, A. and HAINMUELLER, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California’s tobacco control program. J. Amer. Statist. Assoc. 105 493-505. · doi:10.1198/jasa.2009.ap08746
[2] ABADIE, A., DIAMOND, A. and HAINMUELLER, J. (2015). Comparative politics and the synthetic control method. Amer. J. Polit. Sci. 59 495-510.
[3] ABADIE, A. and GARDEAZABAL, J. (2003). The economic costs of conflict: A case study of the Basque country. Am. Econ. Rev. 93 113-132.
[4] Basse, G. W., Feller, A. and Toulis, P. (2019). Randomization tests of causal effects under interference. Biometrika 106 487-494. · Zbl 1434.62094 · doi:10.1093/biomet/asy072
[5] BEN-MICHAEL, E., FELLER, A. and ROTHSTEIN, J. (2018). The augmented synthetic control method. Preprint. Available at arXiv:1811.04170.
[6] BILLMEIER, A. and NANNICINI, T. (2013). Assessing economic liberalization episodes: A synthetic control approach. Rev. Econ. Stat. 95 983-1001.
[7] BLATTBERG, R. C., BRIESCH, R. and FOX, E. J. (1995). How promotions work. Mark. Sci. 14 G122-G132.
[8] BOJINOV, I., CHEN, A. and LIU, M. (2020). The importance of being causal. Harvard Data Science Review.
[9] BOJINOV, I. and MENCHETTI, F. (2020). CausalMBSTS: MBSTS Models for Causal Inference and Forecasting. R package version 0.1.0.
[10] BOJINOV, I., RAMBACHAN, A. and SHEPHARD, N. (2020). Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective. Preprint. Available at arXiv:2003.09915. · Zbl 07497763
[11] BOJINOV, I. and SHEPHARD, N. (2019). Time series experiments and causal estimands: Exact randomization tests and trading. J. Amer. Statist. Assoc. 114 1665-1682. · Zbl 1428.62385 · doi:10.1080/01621459.2018.1527225
[12] BRODERSEN, K. H., GALLUSSER, F., KOEHLER, J., REMY, N. and SCOTT, S. L. (2015). Inferring causal impact using Bayesian structural time-series models. Ann. Appl. Stat. 9 247-274. · Zbl 1454.62473 · doi:10.1214/14-AOAS788
[13] BROWN, P. J., VANNUCCI, M. and FEARN, T. (1998). Multivariate Bayesian variable selection and prediction. J. R. Stat. Soc. Ser. B. Stat. Methodol. 60 627-641. · Zbl 0909.62022 · doi:10.1111/1467-9868.00144
[14] CAO, J. and DOWD, C. (2019). Estimation and inference for synthetic control methods with spillover effects. Preprint. Available at arXiv:1902.07343.
[15] Cox, D. R. (1958). Planning of Experiments. A Wiley Publication in Applied Statistics. Wiley, New York. · Zbl 0084.15802
[16] Dawid, A. P. (1981). Some matrix-variate distribution theory: Notational considerations and a Bayesian application. Biometrika 68 265-274. · Zbl 0464.62039 · doi:10.1093/biomet/68.1.265
[17] DUBE, A. and ZIPPERER, B. (2015). Pooling multiple case studies using synthetic controls: An application to minimum wage policies. IZA Discussion Paper 8944.
[18] FORASTIERE, L., AIROLDI, E. M. and MEALLI, F. (2021). Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks. J. Amer. Statist. Assoc. 116 901-918. · Zbl 1464.62207 · doi:10.1080/01621459.2020.1768100
[19] GELMAN, A., CARLIN, J. B., STERN, H. S., DUNSON, D. B., VEHTARI, A. and RUBIN, D. B. (2013). Bayesian Data Analysis. CRC press, Boca Raton. · Zbl 1279.62004
[20] GOBILLON, L. and MAGNAC, T. (2016). Regional policy evaluation: Interactive fixed effects and synthetic controls. Rev. Econ. Stat. 98 535-551.
[21] GROSSI, G., LATTARULO, P., MARIANI, M., MATTEI, A. and ÖNER, Ö. (2020). Synthetic Control Group Methods in the Presence of Interference: The Direct and Spillover Effects of Light Rail on Neighborhood Retail Activity. Preprint. Available at arXiv:2004.05027.
[22] Hudgens, M. G. and Halloran, M. E. (2008). Toward causal inference with interference. J. Amer. Statist. Assoc. 103 832-842. · Zbl 1471.62507 · doi:10.1198/016214508000000292
[23] Imbens, G. W. and Rubin, D. B. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences. Cambridge Univ. Press, Cambridge. · Zbl 1355.62002
[24] KEOGH, E. and RATANAMAHATANA, C. A. (2005). Exact indexing of dynamic time warping. Knowl. Inf. Syst. 7 358-386.
[25] KREIF, N., GRIEVE, R., HANGARTNER, D., TURNER, A. J., NIKOLOVA, S. and SUTTON, M. (2016). Examination of the synthetic control method for evaluating health policies with multiple treated units. Health Econ. 25 1514-1528. · doi:10.1002/hec.3258
[26] LARSEN, K. (2019). MarketMatching Package Vignette. R package version 1.1.2.
[27] LI, K. T. (2020). Statistical inference for average treatment effects estimated by synthetic control methods. J. Amer. Statist. Assoc. 115 2068-2083. · Zbl 1453.62330 · doi:10.1080/01621459.2019.1686986
[28] MENCHETTI, F. and BOJINOV, I. (2022). Supplement to “Estimating the effectiveness of permanent price reductions for competing products using multivariate Bayesian structural time series models.” https://doi.org/10.1214/21-AOAS1498SUPPA, https://doi.org/10.1214/21-AOAS1498SUPPB
[29] NESLIN, S. A., HENDERSON, C. and QUELCH, J. (1985). Consumer promotions and the acceleration of product purchases. Mark. Sci. 4 147-165.
[30] NICHOLSON, W. and SNYDER, C. M. (2012). Microeconomic Theory: Basic Principles and Extensions. Nelson Education.
[31] O’NEILL, S., KREIF, N., GRIEVE, R., SUTTON, M. and SEKHON, J. S. (2016). Estimating causal effects: Considering three alternatives to difference-in-differences estimation. Health Serv. Outcomes Res. Methodol. 16 1-21. · doi:10.1007/s10742-016-0146-8
[32] PAPADOGEORGOU, G., MEALLI, F., ZIGLER, C. M., DOMINICI, F., WASFY, J. H. and CHOIRAT, C. (2018). Causal Impact of the Hospital Readmissions Reduction Program on Hospital Readmissions and Mortality. Preprint. Available at arXiv:1809.09590.
[33] PAUWELS, K., HANSSENS, D. M. and SIDDARTH, S. (2002). The long-term effects of price promotions on category incidence, brand choice, and purchase quantity. J. Mark. Res. 39 421-439.
[34] ROBINS, J. (1986). A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Math. Model. 7 1393-1512. · Zbl 0614.62136 · doi:10.1016/0270-0255(86)90088-6
[35] ROBINS, J. M., GREENLAND, S. and HU, F.-C. (1999). Estimation of the causal effect of a time-varying exposure on the marginal mean of a repeated binary outcome. J. Amer. Statist. Assoc. 94 687-712. · Zbl 1072.62692 · doi:10.2307/2669978
[36] Rosenbaum, P. R. (2007). Interference between units in randomized experiments. J. Amer. Statist. Assoc. 102 191-200. · Zbl 1284.62494 · doi:10.1198/016214506000001112
[37] RUBIN, D. B. (1981). Estimation in parallel randomized experiments. J. Educ. Stat. 6 377-401.
[38] RUBIN, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist. 12 1151-1172. · Zbl 0555.62010 · doi:10.1214/aos/1176346785
[39] SALVADOR, S. and CHAN, P. (2007). Toward accurate dynamic time warping in linear time and space. Intell. Data Anal. 11 561-580.
[40] Sobel, M. E. (2006). What do randomized studies of housing mobility demonstrate?: Causal inference in the face of interference. J. Amer. Statist. Assoc. 101 1398-1407. · Zbl 1171.62365 · doi:10.1198/016214506000000636
[41] Tchetgen Tchetgen, E. J. and VanderWeele, T. J. (2012). On causal inference in the presence of interference. Stat. Methods Med. Res. 21 55-75. · doi:10.1177/0962280210386779
[42] VANDERWEELE, T. J. (2010). Direct and indirect effects for neighborhood-based clustered and longitudinal data. Sociol. Methods Res. 38 515-544. · doi:10.1177/0049124110366236
[43] VIVIANO, D. and BRADIC, J. (2019). Synthetic learner: Model-free inference on treatments over time. Preprint. Available at arXiv:1904.01490.
[44] WEST, M. and HARRISON, J. (2006). Bayesian Forecasting and Dynamic Models. Springer, Berlin.
[45] ZELLNER, A. and SIOW, A. (1980). Posterior odds ratios for selected regression hypotheses. Trab. Estad. Investig. Oper. 31 585-603 · Zbl 0457.62004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.