×

Online causal inference with application to near real-time post-market vaccine safety surveillance. (English) Zbl 07923601

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] NelsonJC, CookAJ, YuO, ZhaoS, JacksonLA, PsatyBM. Methods for observational post‐licensure medical product safety surveillance. Stat Methods Med Res. 2015;24(2):177‐193.
[2] MooreN, Kreft‐JaisC, HaramburuF, et al. Reports of hypoglycaemia associated with the use of ACE inhibitors and other drugs: a case/non‐case study in the French pharmacovigilance system database. Br J Clin Pharmacol. 1997;44(5):513‐518.
[3] BateA, LindquistM, EdwardsIR, et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol. 1998;54(4):315‐321.
[4] EvansSJ, WallerPC, DavisS. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf. 2001;10(6):483‐486.
[5] WaldA. Sequential tests of statistical hypotheses. Ann Math Stat. 1945;16(2):117‐186. · Zbl 0060.30207
[6] PageES. Continuous inspection schemes. Biometrika. 1954;41(1/2):100‐115. · Zbl 0056.38002
[7] GriggOA, FarewellV, SpiegelhalterD. Use of risk‐adjusted CUSUM and RSPRTcharts for monitoring in medical contexts. Stat Methods Med Res. 2003;12(2):147‐170.
[8] BrownJS, KulldorffM, ChanKA, et al. Early detection of adverse drug events within population‐based health networks: application of sequential testing methods. Pharmacoepidemiol Drug Saf. 2007;16(12):1275‐1284.
[9] BrownJS, KulldorffM, PetronisKR, et al. Early adverse drug event signal detection within population‐based health networks using sequential methods: key methodologic considerations. Pharmacoepidemiol Drug Saf. 2009;18(3):226‐234.
[10] WhiteheadJ. The Design and Analysis of Sequential Clinical Trials. Hoboken, NJ: John Wiley & Sons; 1997.
[11] JennisonC, TurnbullBW. Group Sequential Methods with Applications to Clinical Trials. Boco Raton, FL: CRC Press; 1999.
[12] LiL, KulldorffM, NelsonJC, CookAJ. A propensity score‐enhanced sequential analytic method for comparative drug safety surveillance. Stat Biosci. 2011;3(1):45.
[13] CookAJ, TiwariRC, WellmanRD, et al. Statistical approaches to group sequential monitoring of postmarket safety surveillance data: current state of the art for use in the mini‐sentinel pilot. Pharmacoepidemiol Drug Saf. 2012;21:72‐81.
[14] RobbinsH, MonroS. A stochastic approximation method. Ann Math Stat. 1951;22(3):400‐407. · Zbl 0054.05901
[15] SakrisonDJ. Efficient recursive estimation: application to estimating the parameter of a covariance function. Int J Eng Sci. 1965;3(4):461‐483. · Zbl 0137.37202
[16] ToulisP, AiroldiEM. Scalable estimation strategies based on stochastic approximations: classical results and new insights. Stat Comput. 2015;25(4):781‐795. · Zbl 1332.62291
[17] LinN, XiR. Aggregated estimating equation estimation. Stat Interface. 2011;4(1):73‐83. · Zbl 1245.62026
[18] SchifanoED, WuJ, WangC, YanJ, ChenMH. Online updating of statistical inference in the big data setting. Dent Tech. 2016;58(3):393‐403.
[19] LuoL, SongPXK. Renewable estimation and incremental inference in generalized linear models with streaming datasets. J R Stat Soc: Ser B. 2020;82(1):69‐97. · Zbl 1440.62288
[20] FangY. Scalable statistical inference for averaged implicit stochastic gradient descent. Scand J Stat. 2019; 46(4):987‐1002. · Zbl 1444.62135
[21] PolyakBT, JuditskyAB. Acceleration of stochastic approximation by averaging. SIAM J Control Optim. 1992;30(4):838‐855. · Zbl 0762.62022
[22] StefanskiLA, BoosDD. The calculus of M‐estimation. Am Stat. 2002;56(1):29‐38.
[23] RobinsJM, GreenlandS. Identifiability and exchangeability for direct and indirect effects. Epidemiology. 1992;3(2):143‐155.
[24] PearlJ. Direct and indirect effects. Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence Morgan Kaufmann, San Francisco (CA), 411‐420. 2001.
[25] TchetgenEJT, ShpitserI. Semiparametric theory for causal mediation analysis: efficiency bounds, multiple robustness, and sensitivity analysis. Ann Stat. 2012;40(3):1816‐1845. · Zbl 1257.62033
[26] AngristJD, ImbensGW, RubinDB. Identification of causal effects using instrumental variables. J Am Stat Assoc. 1996;91(434):444‐455. · Zbl 0897.62130
[27] HernánMA, RobinsJM. Instruments for causal inference: an epidemiologist’s dream?Epidemiology. 2006;17(4):360‐372.
[28] MiaoW, GengZ, Tchetgen TchetgenEJ. Identifying causal effects with proxy variables of an unmeasured confounder. Biometrika. 2018;105(4):987‐993. · Zbl 1506.62451
[29] ShiX, MiaoW, NelsonJC, Tchetgen TchetgenEJ. Multiply robust causal inference with double‐negative control adjustment for categorical unmeasured confounding. J R Stat Soc Series B Stat Methodology. 2020;82(2):521‐540. · Zbl 07554764
[30] TchetgenEJT, YingA, CuiY, ShiX, MiaoW. An Introduction to Proximal Causal Learning. arXiv preprint arXiv:2009.10982 2020.
[31] CuiY, PuH, ShiX, MiaoW, TchetgenET. Semiparametric proximal causal inference. arXiv preprint arXiv:2011.08411 2020.
[32] Splawa‐NeymanJ. On the application of probability theory to agricultural experiments. Stat Sci. 1990;5(4):465‐480.
[33] RubinDB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol. 1974;66(5):688‐701.
[34] RosenbaumPR, RubinDB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41‐55. · Zbl 0522.62091
[35] AngristJD, KeuegerAB. Does compulsory school attendance affect schooling and earnings?Quart J Econ. 1991;106(4):979‐1014.
[36] GodambeVP. An optimum property of regular maximum likelihood estimation. Ann Math Stat. 1960;31(4):1208‐1211. · Zbl 0118.34301
[37] HuberPJ. Robust estimation of a location parameter. Ann Math Stat. 1964;35:73‐101. · Zbl 0136.39805
[38] HuberPJ. The behavior of maximum likelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability: Weather Modification. 5. Univ of California Press, 221‐233. 1967. · Zbl 0212.21504
[39] LiangKY, ZegerSL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73(1):13‐22. · Zbl 0595.62110
[40] EfronB. Bayes and likelihood calculations from confidence intervals. Biometrika. 1993;80(1):3‐26. · Zbl 0773.62021
[41] LanK, DemetsD. Discrete sequential boundaries for clinical‐trials. Biometrika. 1983;70(3):659‐663. · Zbl 0543.62059
[42] LanK, DemetsD. Interim analysis: the alpha spending function approach. Stat Med. 1994;13:1341‐1352.
[43] PocockS. Interim analyses for randomized clinical‐trials ‐ the group sequential approach. Biometrics. 1982;38(1):153‐162.
[44] O’BrienP, FlemingT. A multiple testing procedure for clinical trials. Biometrics. 1979;35:549‐556.
[45] YihWK, KulldorffM, FiremanBH, et al. Active surveillance for adverse events: the experience of the vaccine safety datalink project. Pediatrics. 2011;127(1):S54‐S64.
[46] WolfsonM, WallaceSE, MascaN, et al. DataSHIELD: resolving a conflict in contemporary bioscience—performing a pooled analysis of individual‐level data without sharing the data. Int J Epidemiol. 2010;39(5):1372‐1382.
[47] LuoL, WangJ, HectorE. Statistical inference for streamed longitudinal data. Biometrika. 2023;110(4):841‐858. · Zbl 07801352
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.