×

A parameterized complexity view on collapsing \(k\)-cores. (English) Zbl 1508.68269

Summary: We study the NP-hard graph problem Collapsed \(k\)-Core where, given an undirected graph \(G\) and integers \(b\), \(x\), and \(k\), we are asked to remove \(b\) vertices such that the \(k\)-core of remaining graph, that is, the (uniquely determined) largest induced subgraph with minimum degree \(k\), has size at most \(x\). Collapsed \(k\)-Core was introduced by F. Zhang et al. [“Finding critical users for social network engagement: the collapsed k-core problem”, Proc. AAAI Conf. Artif. Intell. 31, No. 1, 245–251 (2017; doi:10.1609/aaai.v31i1.10482)] and it is motivated by the study of engagement behavior of users in a social network and measuring the resilience of a network against user drop outs. Collapsed \(k\)-Core is a generalization of \(r\)-Degenerate Vertex Deletion (which is known to be NP-hard for all \(r \geq 0)\) where, given an undirected graph \(G\) and integers \(b\) and \(r\), we are asked to remove \(b\) vertices such that the remaining graph is \(r\)-degenerate, that is, every its subgraph has minimum degree at most \(r\). We investigate the parameterized complexity of Collapsed \(k\)-Core with respect to the parameters \(b\), \(x\), and \(k\), and several structural parameters of the input graph. We reveal a dichotomy in the computational complexity of Collapsed \(k\)-Core for \(k \leq 2\) and \(k \geq 3\). For the latter case it is known that for all \(x \geq 0\) Collapsed \(k\)-Core is W[P]-hard when parameterized by \(b\). For \(k \leq 2\) we show that Collapsed \(k\)-Core is W[1]-hard when parameterized by \(b\) and in FPT when parameterized by \((b + x)\). Furthermore, we outline that Collapsed \(k\)-Core is in FPT when parameterized by the treewidth of the input graph and presumably does not admit a polynomial kernel when parameterized by the vertex cover number of the input graph.

MSC:

68R10 Graph theory (including graph drawing) in computer science
05C85 Graph algorithms (graph-theoretic aspects)
68Q27 Parameterized complexity, tractability and kernelization
91D30 Social networks; opinion dynamics

References:

[1] Abrahamson, KA; Downey, RG; Fellows, MR, Fixed-parameter tractability and completeness IV: on completeness for w[P] and PSPACE analogues, Annals Pure Appl. Logic, 73, 3, 235-276 (1995) · Zbl 0828.68077 · doi:10.1016/0168-0072(94)00034-Z
[2] Batagelj, V.; Zaveršnik, M., Fast algorithms for determining (generalized) core groups in social networks, Adv. Data Anal. Classif., 5, 2, 129-145 (2011) · Zbl 1284.05252 · doi:10.1007/s11634-010-0079-y
[3] Bazgan, C.; Chopin, M., The complexity of finding harmless individuals in social networks, Discret. Optim., 14, 170-182 (2014) · Zbl 1308.91134 · doi:10.1016/j.disopt.2014.09.004
[4] Bazgan, C.; Chopin, M.; Nichterlein, A.; Sikora, F., Parameterized inapproximability of target set selection and generalizations, Computability, 3, 2, 135-145 (2014) · Zbl 1320.68088 · doi:10.3233/COM-140030
[5] Ben-Zwi, O.; Hermelin, D.; Lokshtanov, D.; Newman, I., Treewidth governs the complexity of target set selection, Discret. Optim., 8, 1, 87-96 (2011) · Zbl 1248.90068 · doi:10.1016/j.disopt.2010.09.007
[6] Bhawalkar, K.; Kleinberg, J.; Lewi, K.; Roughgarden, T.; Sharma, A., Preventing unraveling in social networks: the anchored k-core problem, SIAM J. Discret. Math., 29, 3, 1452-1475 (2015) · Zbl 1327.68173 · doi:10.1137/14097032X
[7] Bodlaender, HL; Jansen, BM; Kratsch, S., Kernelization lower bounds by cross-composition, SIAM J. Discret. Math., 28, 1, 277-305 (2014) · Zbl 1295.05222 · doi:10.1137/120880240
[8] Bodlaender, HL; Drange, PG; Dregi, MS; Fomin, FV; Lokshtanov, D.; Pilipczuk, M., A ckn 5-approximation algorithm for treewidth, SIAM J. Comput., 45, 2, 317-378 (2016) · Zbl 1333.05282 · doi:10.1137/130947374
[9] Cao, Y: A naive algorithm for feedback vertex set. In: Proceedings of the 1st symposium on simplicity in algorithms, (SOSA ’18), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, OASICS, vol. 61, pp 1:1-1:9 (2018) · Zbl 1433.68283
[10] Cao, Y.; Chen, J.; Liu, Y., On feedback vertex set: New measure and new structures, Algorithmica, 73, 1, 63-86 (2015) · Zbl 1327.05318 · doi:10.1007/s00453-014-9904-6
[11] Chen, J.; Kanj, IA; Xia, G., Improved upper bounds for vertex cover, Theor. Comput. Sci., 411, 40-42, 3736-3756 (2010) · Zbl 1205.05217 · doi:10.1016/j.tcs.2010.06.026
[12] Chen, N., On the approximability of influence in social networks, SIAM J. Discret. Math., 23, 3, 1400-1415 (2009) · Zbl 1203.68314 · doi:10.1137/08073617X
[13] Chinn, PZ; Chvátalová, J.; Dewdney, AK; Gibbs, NE, The bandwidth problem for graphs and matrices—a survey, J. Graph Theor., 6, 3, 223-254 (1982) · Zbl 0494.05057 · doi:10.1002/jgt.3190060302
[14] Chitnis, R., Talmon, N.: Can we create large k-cores by adding few edges?. In: Computer Science - Theory and Applications - Proceedings of the 13th International Computer Science Symposium in Russia (CSR 2018), Springer, Lecture Notes in Computer Science, vol. 10846, pp 78-89 (2018) · Zbl 1485.68177
[15] Chitnis, R.; Fomin, FV; Golovach, PA, Parameterized complexity of the anchored k-core problem for directed graphs, Inf. Comput., 247, 11-22 (2016) · Zbl 1336.68119 · doi:10.1016/j.ic.2015.11.002
[16] Chitnis, RH, Fomin, FV, Golovach, PA: Preventing unraveling in social networks gets harder. In: Proceedings of the 27th AAAI conference on artificial intelligence (AAAI ’13), pp 1085-1091. AAAI Press (2013)
[17] Chopin, M.; Nichterlein, A.; Niedermeier, R.; Weller, M., Constant thresholds can make target set selection tractable, Theor. Comput. Syst., 55, 1, 61-83 (2014) · Zbl 1319.68109 · doi:10.1007/s00224-013-9499-3
[18] Courcelle, B.; Makowsky, JA; Rotics, U., Linear time solvable optimization problems on graphs of bounded clique-width, Theor. Comput. Syst., 33, 2, 125-150 (2000) · Zbl 1009.68102 · doi:10.1007/s002249910009
[19] Cygan, M, Nederlof, J, Pilipczuk, M, Pilipczuk, M, van Rooij, JMM, Wojtaszczyk, JO: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of the IEEE 52nd annual symposium on foundations of computer science (FOCS ’11), pp 150-159. IEEE Computer Society (2011) · Zbl 1292.68122
[20] Cygan, M.; Fomin, FV; Kowalik, Ł.; Lokshtanov, D.; Marx, D.; Pilipczuk, M.; Pilipczuk, M.; Saurabh, S., Parameterized Algorithms (2015), New York: Springer, New York · Zbl 1334.90001 · doi:10.1007/978-3-319-21275-3
[21] Diestel, R., Graph Theory, 5th edn, Graduate Texts in Mathematics, vol. 173 (2016), New York: Springer, New York
[22] Downey, RG, Fellows, MR: Fundamentals of Parameterized Complexity. Springer, New York (2013) · Zbl 1358.68006
[23] Dvořák, P, Knop, D, Toufar, T: Target set selection in dense graph classes. In: Proceedings of the 29th international symposium on algorithms and computation (ISAAC ’18), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, LIPIcs, vol. 123, pp 18:1-18:13 (2018) · Zbl 1533.68234
[24] Fomin, FV; Kratsch, S.; Pilipczuk, M.; Pilipczuk, M.; Villanger, Y., Tight bounds for parameterized complexity of cluster editing with a small number of clusters, J. Comput. Syst. Sci., 80, 7, 1430-1447 (2014) · Zbl 1311.68076 · doi:10.1016/j.jcss.2014.04.015
[25] Garcia, D, Mavrodiev, P, Schweitzer, F: Social resilience in online communities: The autopsy of friendster. In: Proceedings of the 1st ACM conference on online social networks (COSN ’13), pp 39-50. ACM (2013)
[26] Garey, MR, Johnson, DS: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979) · Zbl 0411.68039
[27] Guo, J.; Gramm, J.; Hüffner, F.; Niedermeier, R.; Wernicke, S., Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization, J. Comput. Syst. Sci., 72, 8, 1386-1396 (2006) · Zbl 1119.68134 · doi:10.1016/j.jcss.2006.02.001
[28] Hartmann, T.A.: Target set selection parameterized by clique-width and maximum threshold. In: Proceedings of the 44th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2018), Springer, Lecture Notes in Computer Science, vol. 10706, pp 137-149 (2018) · Zbl 1444.68144
[29] Iwata, Y: Linear-time kernelization for feedback vertex set. In: 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Leibniz International Proceedings in Informatics (LIPIcs), vol. 80, pp 68:1-68:14 (2017) · Zbl 1441.68188
[30] Iwata, Y, Kobayashi, Y: Improved analysis of highest-degree branching for feedback vertex set. In: Proceedings of the 14th International Symposium on Parameterized and Exact Computation (IPEC ’19), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Leibniz International Proceedings in Informatics (LIPIcs), vol. 148, pp 22:1-22:11 (2019) · Zbl 1515.68244
[31] Kempe, D.; Kleinberg, JM; Tardos, É., Maximizing the spread of influence through a social network, Theor. Comput., 11, 105-147 (2015) · Zbl 1337.91069 · doi:10.4086/toc.2015.v011a004
[32] Kloks, T., Treewidth, Computations and Approximations, Lecture Notes in Computer Science, vol. 842 (1994), New York: Springer, New York · Zbl 0825.68144
[33] Kociumaka, T.; Pilipczuk, M., Faster deterministic feedback vertex set, Inf. Process. Lett., 114, 10, 556-560 (2014) · Zbl 1371.68116 · doi:10.1016/j.ipl.2014.05.001
[34] Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 3(105) (2013) · Zbl 1258.68068
[35] Lokshtanov, D.; Ramanujan, M.; Saurabh, S., Linear time parameterized algorithms for subset feedback vertex set, ACM Trans. Algo. (TALG), 14, 1, 7 (2018) · Zbl 1440.68139
[36] Luo, J, Molter, H, Suchý, O: A parameterized complexity view on collapsing k-Cores. In: 13th International Symposium on Parameterized and Exact Computation (IPEC 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Leibniz International Proceedings in Informatics (LIPIcs), vol. 115, pp 7:1-7:14 (2019) · Zbl 1503.68228
[37] Malliaros, FD, Vazirgiannis, M: To stay or not to stay: modeling engagement dynamics in social graphs. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management (CIKM ’13), pp 469-478. ACM (2013)
[38] Mathieson, L., The parameterized complexity of editing graphs for bounded degeneracy, Theor. Comput. Sci., 411, 34-36, 3181-3187 (2010) · Zbl 1207.05200 · doi:10.1016/j.tcs.2010.05.015
[39] Mathieson, L, Szeider, S: The parameterized complexity of regular subgraph problems and generalizations. In: Proceedings of the 14th Computing: the Australasian theory symposium (CATS ’08), pp 79-86 (2008)
[40] Nichterlein, A.; Niedermeier, R.; Uhlmann, J.; Weller, M., On tractable cases of target set selection, Soc. Netw. Anal. Min., 3, 2, 233-256 (2013) · doi:10.1007/s13278-012-0067-7
[41] Peleg, D.: Immunity against Local Influence. In: Language, Culture, Computation. Computing - Theory and Technology - Essays Dedicated to Yaacov Choueka on the Occasion of His 75Th Birthday, Part I, Springer, Lecture Notes in Computer Science, vol. 8001, pp 168-179 (2014) · Zbl 1486.68137
[42] Seidman, SB, Network structure and minimum degree, Soc. Networks, 5, 3, 269-287 (1983) · doi:10.1016/0378-8733(83)90028-X
[43] Ueno, S.; Kajitani, Y.; Gotoh, S., On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three, Discret. Math., 72, 1-3, 355-360 (1988) · Zbl 0678.05026 · doi:10.1016/0012-365X(88)90226-9
[44] Wang, X, Donaldson, R, Nell, C, Gorniak, P, Ester, M, Bu, J: Recommending groups to users using user-group engagement and time-dependent matrix factorization. In: Proceedins of the 30th AAAI conference on artificial intelligence (AAAI ’16), pp 1331-1337. AAAI Press (2016)
[45] Wu, S, Das Sarma, A, Fabrikant, A, Lattanzi, S, Tomkins, A: Arrival and departure dynamics in social networks. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM ’13), pp 233-242. ACM (2013)
[46] Zhang, F, Zhang, Y, Qin, L, Zhang, W, Lin, X: Finding critical users for social network engagement: The collapsed k-core problem. In: Proceedins of the 31st AAAI conference on artificial intelligence (AAAI ’17), pp 245-251. AAAI Press (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.