×

Effect of Coriolis force on the linear stability of subaqueous dunes with erodible and non-erodible beds. (English) Zbl 07413650

Summary: Dunes, are wavy-shaped structures, that can be found on river shores and underwater. We aim to investigate the influence of Coriolis effect on the linear stability of subaqueous dunes using a simple model based on the three-dimensional shallow water equations written in rotating frame of reference. The analysis is performed for both erodible and non-erodible beds. Our analytical results in the absence of Coriolis force are verified with published results. The wave speed and growth rate of disturbances are presented for different Coriolis parameter, Froude number and erodibility. A new mode is observed, which becomes unstable beyond a threshold value of Coriolis parameter.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Charru, F.; Forcrand-Millard, D. P., Hydrodynamic Instabilities, Cambridge Texts in Applied Mathematics, Series, vol. Number 37 (2011), Cambridge University Press · Zbl 1314.76002
[2] Colombini, M., Revisiting the linear theory of sand dune formation, J. Fluid Mech., 502, 1-16 (2004) · Zbl 1057.76021
[3] Cushman-Roisin, B.; Beckers, J. M., Introduction to Geophysical Fluid Dynamics (2011), Elsevier Gezondheidszorg · Zbl 1319.86001
[4] Andrews, D. G., An Introduction to Atmospheric Physics (2010), Cambridge University Press
[5] Dellar, P. J.; Salmon, R., Shallow water equations with a complete Coriolis force and topography, Phys. Fluids, 17, 10, Article 106601 pp. (2005) · Zbl 1188.76039
[6] Engelund, F., Instability of erodible beds, J. Fluid Mech., 42, 225-244 (1970)
[7] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics (2006), Cambridge University Press
[8] Gao, X.; Gadal, C.; Rozier, O.; Narteau, C., Morphodynamics of barchan and dome dunes under variable wind regimes, Geology, 46, 9, 743-746 (2018)
[9] Gradowczyk, M. H., Wave propagation and boundary instability in erodible-bed channels, J. Fluid Mech., 33, 1, 93-112 (1968) · Zbl 0155.56703
[10] Hassan, H. S.; Ramadan, K. T.; Hanna, S. N., Numerical solution of the rotating shallow water flows with topography using the fractional steps method, Appl. Math., 1, 02, 104 (2010)
[11] Kennedy, J. F., The mechanism of dunes and antidunes in erodible-bed channels, J. Fluid Mech., 16, 521-544 (1963) · Zbl 0122.43602
[12] Kundu, P. K.; Cohen, I. M.; Dowling, D. R., Fluid Mechanics, 5th ed. (2012), Academic Press: Academic Press Waltham, MA · Zbl 1302.76001
[13] Kundu, P. K.; Cohen, I. M.; Dowling, D. R., Fluid Mechanics (2012), Elsevier Gezondheidszorg · Zbl 1302.76001
[14] Luchini, P.; Charru, F., The phase lead of shear stress in shallow-water flow over a perturbed bottom, J. Fluid Mech., 665, 516-539 (2010) · Zbl 1225.76084
[15] Lysne, D. K., Movement of sand in tunnels, J. Hydraul. Div., 95, 6, 1835-1846 (1969)
[16] Melo, H. P.; Parteli, E. J.; Andrade, J. S.; Herrmann, H. J., Linear stability analysis of transverse dunes, Phys. A, Stat. Mech. Appl., 391, 20, 4606-4614 (2012)
[17] Meleshko, S. V., Complete group classification of the two-dimensional shallow water equations with constant Coriolis parameter in Lagrangian coordinates, Commun. Nonlinear Sci. Numer. Simul., 89, Article 105293 pp. (2020) · Zbl 1450.35022
[18] Meyer-Peter, E.; Muller, R., Formulas for bed load transport, (Proceedings of the Second Meeting, International Association of Hydro-Environment Engineering and Research. Proceedings of the Second Meeting, International Association of Hydro-Environment Engineering and Research, Stockholm, Sweden (1948)), 39-64
[19] Narteau, C.; Rozier, O., Development and steady states of transverse dunes: a numerical analysis of dune pattern coarsening and giant dunes, J. Geophys. Res., Earth Surf., 120, 2200-2219 (2015)
[20] Ripa, P., General stability conditions for zonal flows in a one-layer model on the β-plane or the sphere, J. Fluid Mech., 126, 463-489 (1983) · Zbl 0521.76041
[21] Salmon, R., Lectures on Geophysical Fluid Dynamics (1998), Oxford University Press
[22] Reffet, E.; Courrech du Pont, S.; Hersen, P.; Douady, S., Formation and stability of transverse and longitudinal sand dunes, Geology, 38, 6, Article 491{494 pp. (2010)}
[23] Richards, K. J., The formation of ripples and dunes on an erodible bed, J. Fluid Mech., 99, 3, 597-618 (1980) · Zbl 0451.76041
[24] Rozier, O.; Narteau, C.; Gadal, C.; Claudin, P.; Courrech du Pont, S., Elongation and stability of a linear dune, Geophys. Res. Lett., 46, 24, 14521-14530 (2019)
[25] Stewart, A. L.; Dellar, P. J., Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-plane, J. Fluid Mech., 651, 387-413 (2010) · Zbl 1189.76098
[26] Stewart, A. L.; Dellar, P. J., Multilayer shallow water equations with complete Coriolis force. Part 2. Linear plane waves, J. Fluid Mech., 690, 16-50 (2012) · Zbl 1241.76093
[27] Tort, M.; Ribstein, B.; Zeitlin, V., Symmetric and asymmetric inertial instability of zonal jets on the f-plane with complete Coriolis force, J. Fluid Mech., 788, 274-302 (2016) · Zbl 1338.76129
[28] Wong, M.; Parker, G., Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database, J. Hydraul. Eng., 132, 11, 1159-1168 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.