×

Well balanced finite volume schemes for shallow water equations on manifolds. (English) Zbl 1511.76060

Summary: In this paper we propose a novel second-order accurate well balanced scheme for shallow water equations in general covariant coordinates over manifolds. In our approach, once the gravitational field is defined for the specific case, one equipotential surface is detected and parametrized by a frame of general covariant coordinates. This surface is the manifold whose covariant parametrization induces a metric tensor. The model is then re-written in a hyperbolic form with a tuple of conserved variables composed both of the evolving physical quantities and the metric coefficients. This formulation allows the numerical scheme to automatically compute the curvature of the manifold as long as the physical variables are evolved. In a classical well balanced formulation, the knowledge of a given equilibrium is exploited for evolving the specific state seen as the sum of the equilibrium and the fluctuations of the state around the equilibrium itself. On the contrary, the numerical approach proposed here is automatically well balanced for the water at rest solution (defined by zero velocity and constant free surface) for general manifoldswithout having to exploit the exact equilibrium profile during the computation. In particular, this numerical strategy allows to preserve the accuracy of the water at rest equilibrium at machine precision and on large timescales, even for non-smooth bottom topographies. As a matter of fact, the proposed local polynomial reconstruction, needed at each time step by the scheme for evolving the state, is built in order to automatically cancel any numerical error committed for describing jumps in the bathymetry. As a further effect, also out of the equilibrium, the typical spurious non-physical oscillations of the recovered numerical solution in a neighborhood of the discontinuities are healed. Thus, once the information on both the bathymetry and the metric of the manifold are properly collected in the flux terms and in the nonconservative products, the resulting numerical strategy turns out to be more accurate in finding also non-equilibrium solutions. Numerical results close the work. After having proved that the scheme is second-order accurate, we test the recovery of the water at rest equilibrium at machine precision for different bottom topographies (eventually discontinuous) with various metric on very long simulation times. In particular, after having considered smooth bathymetries with compact support, we relax the assumption on the continuity of water at rest equilibrium with discontinuous bathymetries disturbed by a white noise.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
74S20 Finite difference methods applied to problems in solid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics

Software:

HE-E1GODF; chammp; D-Claw

References:

[1] Lanzoni, S.; Siviglia, A.; Frascati, A.; Seminara, G., Long waves in erodible channels and morphodynamic influence, Water Resour. Res., 42, 6 (2006)
[2] Zolezzi, G.; Seminara, G., Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening, J. Fluid Mech., 438, 13, 183-211 (2001) · Zbl 1034.76018
[3] Fraccarollo, L.; Capart, H., Riemann wave description of erosional dam-break flows, J. Fluid Mech., 461, 183-228 (2002) · Zbl 1142.76344
[4] George, D. L.; Iverson, R. M., A depth-averaged debris-flow model that includes the effects of evolving dilatancy. II. Numerical predictions and experimental tests, Proc. R. Soc. A, 470, 2170, 20130820 (2014) · Zbl 1371.86007
[5] Iverson, R. M.; George, D. L., A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis, Proc. R. Soc. A, 470, 2170, 20130819 (2014) · Zbl 1371.86008
[6] Holton, J. R., An introduction to dynamic meteorology, Am. J. Phys., 41, 5, 752-754 (1973)
[7] Jacobs, A. F.; Jetten, T. H.; Lucassen, D.; Heusinkveld, B. G., Diurnal temperature fluctuations in a natural shallow water body, Agric. For. Meteorol., 88, 1-4, 269-277 (1997)
[8] Higdon, R. L., Numerical modelling of ocean circulation, Acta Numer., 15, 385-470 (2006) · Zbl 1108.76002
[9] Cotter, C. J.; Ham, D. A.; Pain, C. C., A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling, Ocean Model., 26, 1-2, 86-90 (2009)
[10] Gray, J.; Wieland, M.; Hutter, K., Gravity-driven free surface flow of granular avalanches over complex basal topography, Proc. R. Soc. Lond. Ser. A, 455, 1985, 1841-1874 (1999) · Zbl 0951.76091
[11] Segur, H., Waves in shallow water, with emphasis on the tsunami of 2004, Tsunami and Nonlinear Waves, 3-29 (2007), Springer · Zbl 1310.76035
[12] Staniforth, A., Dynamically consistent shallow-water equation sets in non-spherical geometry with latitudinal variation of gravity, Q. J. R. Meteorol. Soc., 141, 691, 2429-2443 (2015)
[13] Bénard, P., An assessment of global forecast errors due to the spherical geopotential approximation in the shallow-water case, Q. J. R. Meteorol. Soc., 141, 686, 195-206 (2015)
[14] Staniforth, A., Consistent quasi-shallow models of the global atmosphere in non-spherical geopotential coordinates with complete coriolis force, Q. J. R. Meteorol. Soc., 141, 688, 979-986 (2015)
[15] Pedlosky, J., Geophysical Fluid Dynamics, vol. 710 (1987), Springer · Zbl 0713.76005
[16] Williamson, D. L.; Drake, J. B.; Hack, J. J.; Jakob, R.; Swarztrauber, P. N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102, 1, 211-224 (1992) · Zbl 0756.76060
[17] Kolar, R.; Gray, W.; Westerink, J.; Luettich, R., Shallow water modeling in spherical coordinates: equation formulation, numerical implementation, and application, J. Hydraul. Res., 32, 1, 3-24 (1994)
[18] Arpaia, L.; Ricchiuto, M., Well balanced residual distribution for the ale spherical shallow water equations on moving adaptive meshes, J. Comput. Phys., 405, 109173 (2020) · Zbl 1453.65295
[19] Baldauf, M., Discontinuous Galerkin solver for the shallow-water equations in covariant form on the sphere and the ellipsoid, J. Comput. Phys., 410, 109384 (2020) · Zbl 1436.65136
[20] Staniforth, A.; White, A., The shallow-water equations in non-spherical geometry with latitudinal variation of gravity, Q. J. R. Meteorol. Soc., 141, 687, 655-662 (2015)
[21] Staniforth, A.; White, A., Geophysically realistic, ellipsoidal, analytically tractable (GREAT) coordinates for atmospheric and oceanic modelling, Q. J. R. Meteorol. Soc., 141, 690, 1646-1657 (2015)
[22] Bachini, E.; Putti, M., Geometrically intrinsic modeling of shallow water flows, ESAIM: Math. Model. Numer.Anal., 54, 6, 2125-2157 (2020) · Zbl 1466.76017
[23] Chow, V. T., Open-Channel Hydraulics (1959), McGraw-Hill Civil Engineering Series
[24] Castro, M. J.; Ortega, S.; Parés, C., Well-balanced methods for the shallow water equations in spherical coordinates, Comput. Fluids, 157, 196-207 (2017) · Zbl 1390.76408
[25] Gaburro, E.; Castro, M. J.; Dumbser, M., A well balanced finite volume scheme for general relativity, SIAM J. Sci. Comput., 43, 6, B1226-B1251 (2021) · Zbl 07456293
[26] Fent, I.; Putti, M.; Gregoretti, C.; Lanzoni, S., Modeling shallow water flows on general terrains, Adv. Water Resour., 121, 316-332 (2018)
[27] Valiani, A.; Caleffi, V., Momentum balance in the shallow water equations on bottom discontinuities, Adv. Water Resour., 100, 1-13 (2017)
[28] Bermudez, A.; Vazquez, M. E., Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, 23, 8, 1049-1071 (1994) · Zbl 0816.76052
[29] LeVeque, R. J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, J. Comput. Phys., 146, 1, 346-365 (1998) · Zbl 0931.76059
[30] Perthame, B.; Simeoni, C., A kinetic scheme for the Saint-Venant system with a source term, Calcolo, 38, 4, 201-231 (2001) · Zbl 1008.65066
[31] Gosse, L., A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms, Math. Models Methods Appl. Sci., 11, 02, 339-365 (2001) · Zbl 1018.65108
[32] Rebollo, T. C.; Delgado, A. D.; Nieto, E. D.F., A family of stable numerical solvers for the shallow water equations with source terms, Comput. Methods Appl. Mech. Eng., 192, 1-2, 203-225 (2003) · Zbl 1083.76557
[33] Bouchut, F., Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: And Well-Balanced Schemes for Sources (2004), Springer Science & Business Media · Zbl 1086.65091
[34] Audusse, E.; Bouchut, F.; Bristeau, M.-O.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25, 6, 2050-2065 (2004) · Zbl 1133.65308
[35] Tang, H.; Tang, T.; Xu, K., A gas-kinetic scheme for shallow-water equations with source terms, Z. Angew. Math. Phys. ZAMP, 55, 3, 365-382 (2004) · Zbl 1142.76457
[36] Castro, M.; Gallardo, J. M.; López-GarcÍa, J. A.; Parés, C., Well-balanced high order extensions of Godunov’s method for semilinear balance laws, SIAM J. Numer. Anal., 46, 2, 1012-1039 (2008) · Zbl 1159.74045
[37] Käppeli, R.; Mishra, S., Well-balanced schemes for the Euler equations with gravitation, J. Comput. Phys., 259, 199-219 (2014) · Zbl 1349.76345
[38] Chandrashekar, P.; Klingenberg, C., A second order well-balanced finite volume scheme for Euler equations with gravity, SIAM J. Sci. Comput., 37, 3, B382-B402 (2015) · Zbl 1320.76078
[39] Castro, M. J.; de Luna, T. M.; Parés, C., Well-balanced schemes and path-conservative numerical methods, Handbook of Numerical Analysis, vol. 18, 131-175 (2017), Elsevier · Zbl 1368.65131
[40] Gaburro, E.; Dumbser, M.; Castro, M. J., Direct arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes, Comput. Fluids, 159, 254-275 (2017) · Zbl 1390.76433
[41] Gaburro, E.; Castro, M. J.; Dumbser, M., Well-balanced arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity, Mon. Not. R. Astron. Soc., 477, 2, 2251-2275 (2018)
[42] Klingenberg, C.; Puppo, G.; Semplice, M., Arbitrary order finite volume well-balanced schemes for the Euler equations with gravity, SIAM J. Sci. Comput., 41, 2, A695-A721 (2019) · Zbl 1412.65125
[43] Guerrero Fernandez, E.; Castro-Díaz, M. J.; Morales de Luna, T., A second-order well-balanced finite volume scheme for the multilayer shallow water model with variable density, Mathematics, 8, 5, 848 (2020)
[44] Thomann, A.; Puppo, G.; Klingenberg, C., An all speed second order well-balanced IMEXrelaxation scheme for the Euler equations with gravity, J. Comput. Phys., 420, 109723 (2020) · Zbl 07506636
[45] J.P. Berberich, R. Käppeli, P. Chandrashekar, C. Klingenberg, High order discretely well-balanced methods for arbitrary hydrostatic atmospheres, arXiv preprint arXiv:2005.01811(2020). · Zbl 1490.76141
[46] Gómez-Bueno, I.; Castro, M. J.; Parés, C., High-order well-balanced methods for systems of balance laws: a control-based approach, Appl. Math. Comput., 394, 125820 (2021) · Zbl 1465.76062
[47] Guerrero Fernández, E.; Escalante, C.; Castro Díaz, M. J., Well-balanced high-order discontinuous Galerkin methods for systems of balance laws, Mathematics, 10, 01, 15 (2021)
[48] Berberich, J. P.; Chandrashekar, P.; Klingenberg, C., High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws, Comput. Fluids, 219, 104858 (2021) · Zbl 1521.76393
[49] Castro, M. J.; Parés, C., Well-balanced high-order finite volume methods for systems of balance laws, J. Sci. Comput., 82, 2, 1-48 (2020) · Zbl 1440.65109
[50] Lukáčová-Medvid’ová, M.; Noelle, S.; Kraft, M., Well-balanced finite volume evolution Galerkin methods for the shallow water equations, J. Comput. Phys., 221, 1, 122-147 (2007) · Zbl 1123.76041
[51] Noelle, S.; Pankratz, N.; Puppo, G.; Natvig, J. R., Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. Comput. Phys., 213, 2, 474-499 (2006) · Zbl 1088.76037
[52] Noelle, S.; Xing, Y.; Shu, C.-W., High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys., 226, 1, 29-58 (2007) · Zbl 1120.76046
[53] G. Russo, A. Khe, High order well-balanced finite volume schemes for systems of balance laws (2008). · Zbl 1407.76088
[54] Kazolea, M.; Delis, A., A well-balanced shock-capturing hybrid finite volume-finite difference numerical scheme for extended 1D Boussinesq models, Appl. Numer. Math., 67, 167-186 (2013) · Zbl 1308.76185
[55] Xing, Y.; Shu, C.-W., High-order well-balanced finite difference WENOschemes for a class of hyperbolic systems with source terms, J. Sci. Comput., 27, 1, 477-494 (2006) · Zbl 1115.76059
[56] Abgrall, R.; Ricchiuto, M., Hyperbolic balance laws: residual distribution, local and global fluxes, Numer. Fluid Dyn., 177-222 (2022) · Zbl 1513.76096
[57] Tort, M.; Dubos, T.; Bouchut, F.; Zeitlin, V., Consistent shallow-water equations on the rotating sphere with complete coriolis force and topography, J. Fluid Mech., 748, 789-821 (2014) · Zbl 1309.86004
[58] Bresch, D.; Desjardins, B., Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Commun. Math. Phys., 238, 1, 211-223 (2003) · Zbl 1037.76012
[59] Grundy, R.; Rottman, J. W., The approach to self-similarity of the solutions of the shallow-water equations representing gravity-current releases, J. Fluid Mech., 156, 39-53 (1985) · Zbl 0586.76017
[60] Wald, R. M., General Relativity (2010), University of Chicago Press
[61] Boscheri, W.; Dumbser, M.; Gaburro, E., Continuous finite element subgrid basis functions for discontinuous Galerkin schemes on unstructured polygonal Voronoi meshes, Commun. Comput. Phys., 32, 1, 259-298 (2022) · Zbl 1492.65261
[62] Van Leer, B., Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys., 14, 4, 361-370 (1974) · Zbl 0276.65055
[63] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2013), Springer Science & Business Media
[64] Van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 1, 101-136 (1979) · Zbl 1364.65223
[65] Barth, T.; Jespersen, D., The design and application of upwind schemes on unstructured meshes, 27th Aerospace Sciences Meeting, 366 (1989)
[66] Dal Maso, G.; Lefloch, P. G.; Murat, F., Definition and weak stability of nonconservative products, J. Math. Pures Appl., 74, 6, 483-548 (1995) · Zbl 0853.35068
[67] Castro, M.; Pardo, A.; Parés, C.; Toro, E., On some fast well-balanced first order solvers for nonconservative systems, Math. Comput., 79, 271, 1427-1472 (2010) · Zbl 1369.65107
[68] Gaburro, E.; Boscheri, W.; Chiocchetti, S.; Klingenberg, C.; Springel, V.; Dumbser, M., High order direct arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes, J. Comput. Phys., 407, 109167 (2020) · Zbl 07504692
[69] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 18, 8209-8253 (2008) · Zbl 1147.65075
[70] Teschl, G., Mathematical methods in quantum mechanics, Grad. Stud. Math., 99, 106 (2009) · Zbl 1166.81004
[71] Lieb, E. H.; Loss, M., Analysis, vol. 14 (2001), American Mathematical Soc. · Zbl 0966.26002
[72] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 1, 300-321 (2006) · Zbl 1130.65089
[73] Castro, M.; Gallardo, J.; Parés, C., High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems, Math. Comput., 75, 255, 1103-1134 (2006) · Zbl 1096.65082
[74] Grosheintz-Laval, L.; Käppeli, R., High-order well-balanced finite volume schemes for the Euler equations with gravitation, J. Comput. Phys., 378, 324-343 (2019) · Zbl 1416.65266
[75] Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O., ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics, Mon. Not. R. Astron. Soc., 477, 4, 4543-4564 (2018)
[76] Fambri, F., Discontinuous Galerkin methods for compressible and incompressible flows on space-time adaptive meshes: toward a novel family of efficient numerical methods for fluid dynamics, Arch. Comput. Methods Eng., 27, 1, 199-283 (2020)
[77] Dumbser, M.; Guercilena, F.; Köppel, S.; Rezzolla, L.; Zanotti, O., Conformal and covariant Z4 formulation of the einstein equations: strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes, Phys. Rev. D, 97, 8, 084053 (2018)
[78] http://link.springer.com/10.1007/s00161-019-00770-6
[79] Olivares, H.; Peshkov, I.; Most, E.; Guercilena, F.; Papenfort, L., New first-order formulation of the einstein equations exploiting analogies with electrodynamics, Phys. Rev. D, 105, 12, 124038 (2022)
[80] Gaburro, E.; Dumbser, M., A posteriori subcell finite volume limiter for general PNPM schemes: applications from gasdynamics to relativistic magnetohydrodynamics, J. Sci. Comput., 86, 3, 1-41 (2021) · Zbl 1475.65091
[81] Chiocchetti, S.; Peshkov, I.; Gavrilyuk, S.; Dumbser, M., High order ADER schemes and GLM curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension, J. Comput. Phys., 426, 109898 (2021) · Zbl 07510040
[82] Han Veiga, M.; Öffner, P.; Torlo, D., DeC and ADER: similarities, differences and a unified framework, J. Sci. Comput., 87, 1, 1-35 (2021) · Zbl 1459.76086
[83] Springel, V., E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh, Mon. Not. R. Astron. Soc., 401, 2, 791-851 (2010)
[84] Gaburro, E., A unified framework for the solution of hyperbolic PDE systems using high order direct arbitrary-Lagrangian-Eulerian schemes on moving unstructured meshes with topology change, Arch. Comput. Methods Eng., 28, 3, 1249-1321 (2021)
[85] Bergmann, M.; Carlino, M. G.; Iollo, A.; Telib, H., ADER scheme for incompressible Navier-Stokes equations on overset grids with a compact transmission condition, J. Comput. Phys., 111414 (2022) · Zbl 07568532
[86] N. Moes, J.-F. Remacle, J. Lambrechts, B. Le, The extreme mesh deformation approach (X-MESH) for the Stefan phase-change model, arXiv preprint arXiv:2111.04179(2021). · Zbl 07652798
[87] Arpaia, L.; Ricchiuto, M.; Filippini, A. G.; Pedreros, R., An efficient covariant frame for the spherical shallow water equations: well balanced DG approximation and application to tsunami and storm surge, Ocean Model., 169, 101915 (2022)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.