×

Optimal interpolation formulas in the space \(W_2^{(m,m-1)}\). (English) Zbl 1457.41001

Summary: In the present paper we investigate the problem of construction of the optimal interpolation formulas in the space \(W_2^{(m,m-1)}(0,1)\). We find the norm of the error functional which gives the upper bound for the error of the interpolation formulas in the space \(W_2^{(m,m-1)}(0,1)\). Further we get the system of linear equations for coefficients of the optimal interpolation formulas. Using the discrete analogue of the differential operator \(\frac{\,\text{d}^{2m}}{\,\text{d}x^{2m}}-\frac{\,\text{d}^{2m-2}}{\,\text{d}x^{2m-2}}\) and its properties we find explicit formulas for the coefficients of the optimal interpolation formulas. Finally, we give some numerical results which the confirm theoretical results of the paper.

MSC:

41A05 Interpolation in approximation theory
65D30 Numerical integration
65D32 Numerical quadrature and cubature formulas
Full Text: DOI

References:

[1] Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The Theory of Splines and their Applications, Mathematics in Science and Engineering. Academic Press, New York (1967) · Zbl 0158.15901
[2] Arcangeli, R., Lopez de Silanes, M.C., Torrens, J.J.: Multidimensional Minimizing Splines, p. 261. Kluwer Academic publishers, Boston (2004) · Zbl 1064.41001 · doi:10.1007/b130045
[3] Attea, M.: Hilbertian kernels and spline functions. In: Brezinski, C., Wuytack, L. (eds.) Studies in Computational Matematics 4. North-Holland, Amsterdam (1992) · Zbl 0767.41015
[4] Avezova, N.R., Samiev, K.A., Hayotov, A.R., Nazarov, I.M., Ergashev, ZZh, Samiev, M.O., Suleimanov, ShI: Modeling of the unsteady temperature conditions of solar greenhouses with a short-term water heat accumulator and its experimental testing. Appl. Solar Energy 46, 4-7 (2010) · doi:10.3103/S0003701X10010020
[5] Bezhaev, AYu., Vasilenko, V.A.: Variational Theory of Splines, p. 269. Springer, New York (2001) · Zbl 0979.41007 · doi:10.1007/978-1-4757-3428-7
[6] de Boor, C.: Best approximation properties of spline functions of odd degree. J. Math. Mech. 12, 747-749 (1963) · Zbl 0116.27601
[7] de Boor, C.: A Practical Guide to Splines. Springer, Berlin (1978) · Zbl 0406.41003 · doi:10.1007/978-1-4612-6333-3
[8] Hayotov, A.R., Babaev, S.S.: Calculation of the coefficients of optimal interpolation formulas in the space \[W_2^{(2,1)}(0,1)\] W2(2,1)(0,1). Uzb. Math. J. 3, 126-133 (2014). (in Russian)
[9] Hayotov, A.R., Kholova, S.O., Mamatova, N.H.: An optimal interpolation formula and an interpolation spline minimizing the semi-norm in the space \[W_2^{(1,0)}(0,1)\] W2(1,0)(0,1). Uzb. Math. J. 2, 121-126 (2015). (in Russian)
[10] Holladay, J.C.: Smoothest curve approximation. Math. Tables Aids Comput. 11, 223-243 (1957) · Zbl 0084.34904 · doi:10.2307/2001941
[11] Ignatev, M.I., Pevniy, A.B.: Natural Splines of Many Variables. Nauka, Leningrad (1991). (in Russian) · Zbl 0732.41012
[12] Laurent, P.-J.: Approximation and Optimization, p. 496. Mir, Moscow (1975). (in Russian)
[13] Schoenberg, I.J.: On trigonometric spline interpolation. J. Math. Mech. 13, 795-825 (1964) · Zbl 0147.32104
[14] Schumaker, L.L.: Spline Functions: Basic Theory, p. 600. Cambridge University Press, Cambridge (2007) · Zbl 1123.41008 · doi:10.1017/CBO9780511618994
[15] Shadimetov, Kh.M., Hayotov, A.R.: Construction of the discrete analogue of the differential operator \[d^{2m}/dx^{2m}-d^{2m-2}/dx^{2m-2}\] d2m/dx2m-d2m-2/dx2m-2. Uzb. Math. J. 2, 85-95 (2004)
[16] Shadimetov, Kh.M., Hayotov, A.R.: Properties of the discrete analogue of the differential operator \[d^{2m}/dx^{2m}-d^{2m-2}/dx^{2m-2}\] d2m/dx2m-d2m-2/dx2m-2. Uzb. Math. J. 4, 72-83 (2004)
[17] Shadimetov, Kh.M., Hayotov, A.R.: Construction of interpolation splines minimizing semi-norm in \[W_2^{(m, m-1)}(0,1)\] W2(m,m-1)(0,1) space. BIT Numer. Math. 53, 545-563 (2013) · Zbl 1273.41007
[18] Shadimetov, Kh.M., Hayotov, A.R.: Optimal quadrature fromulas in the sense of Sard in \[W_2^{(m, m-1)}\] W2(m,m-1) space. Calcolo 51, 211-243 (2014) · Zbl 1312.65035
[19] Sobolev, S.L.: On interpolation of functions of \[n\] n variables. In: Selected Works of S.L. Sobolev, pp. 451-456. Springer, Berlin (2006)
[20] Sobolev, S.L.: Formulas of mechanical cubature in \[n\] n-dimensional space, In: Selected Works of S.L. Sobolev, pp. 445-450, Springer, Berlin (2006)
[21] Sobolev, S.L.: Introduction to the Theory of Cubature Formulas, p. 808. Nauka, Moscow (1974)
[22] Sobolev, S.L., Vaskevich, V.L.: The Theory of Cubature Formulas. Kluwer Academic Publishers Group, Dordrecht (1997) · Zbl 0877.65009 · doi:10.1007/978-94-015-8913-0
[23] Sobolev, S.L.: The coefficients of optimal quadrature formulas, In: Selected Works of S.L.Sobolev, pp. 561-566, Springer, Berlin (2006)
[24] Stechkin, S.B., Subbotin, YuN: Splines in Computational Mathematics, p. 248. Nauka, Moscow (1976). (in Russian) · Zbl 0462.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.