×

IntroSurvey of representation theory. (English) Zbl 1542.81479

Summary: There could be thousands of Introductions/Surveys of representation theory, given that it is an enormous field. This is just one of them, quite personal and informal. It has an increasing level of difficulty; the first part is intended for final year undergrads. We explain some basics of representation theory, notably Schur-Weyl duality and representations of the symmetric group. We then do the quantum version, introduce Kazhdan-Lusztig theory, quantum groups and their categorical versions. We then proceed to a survey of some recent advances in modular representation theory. We finish with 20 open problems and a song of despair.

MSC:

81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
20G05 Representation theory for linear algebraic groups
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
20C20 Modular representations and characters
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory

References:

[1] Abe N (2019) On Soergel bimodules. arXiv:1901.02336
[2] Abe N (2021) A homomorphism between Bott-Samelson bimodules. arXiv:2012.09414
[3] Achar, PN; Makisumi, S.; Riche, S.; Williamson, G., Koszul duality for Kac-Moody groups and characters of tilting modules, J Am Math Soc, 32, 1, 261-310, (2019) · Zbl 1450.20011
[4] Alexander, J., A lemma on systems of knotted curves, Proc Natl Acad, 9, 3, 93-95, (1923) · JFM 49.0408.03
[5] Andersen HH, Jantzen JC, Soergel W (1994) Representations of quantum groups at a \(p\) th root of unity and of semisimple groups in characteristic \(p\): independence of \(p\). Astérisque (220):321 · Zbl 0802.17009
[6] Andruskiewitsch, N.; Santos, WF, The beginnings of the theory of Hopf algebras, Acta Appl Math, 108, 1, 3-17, (2009) · Zbl 1192.16030
[7] Andruskiewitsch, N.; Schneider, H-J, On the classification of finite-dimensional pointed Hopf algebras, Ann Math (2), 171, 1, 375-417, (2010) · Zbl 1208.16028
[8] Anno, R.; Bezrukavnikov, R.; Mirković, I., Stability conditions for Slodowy slices and real variations of stability, Mosc Math J, 15, 2, 187-203, (2015) · Zbl 1342.14034
[9] Belolipetsky, M., Cells and representations of right-angled Coxeter groups, Selecta Math (NS), 10, 3, 325-339, (2004) · Zbl 1074.20028
[10] Belolipetsky M, Gunnells P (2015) Kazhdan-Lusztig cells in infinite Coxeter groups. J Gen Lie Theory Appl 9(S1):S1-002, 4 · Zbl 1372.20008
[11] Belolipetsky, M.; Gunnells, P.; Scott, RA, Kazhdan-Lusztig cells in planar hyperbolic Coxeter groups and automata, Int J Algebra Comput, 24, 5, 757-772, (2014) · Zbl 1314.20027
[12] Bernstein, J.; Lunts, V., Equivariant sheaves and functors, vol 1578. Lecture notes in mathematics, (1994), Berlin: Springer, Berlin · Zbl 0808.14038
[13] Bezrukavnikov R, Riche S (2021) Hecke action on the principal block. arXiv:2009.10587
[14] Björner, A.; Ekedahl, T., On the shape of Bruhat intervals, Ann Math (2), 170, 2, 799-817, (2009) · Zbl 1226.05268
[15] Block, RE, The irreducible representations of the Lie algebra \(\mathfrak{sl}_2\) and of the Weyl algebra, Adv Math, 39, 1, 69-110, (1981) · Zbl 0454.17005
[16] Blundell C, Buesing L, Davies A, Velickovic P, Williamson G (2021) Towards combinatorial invariance for Kazhdan-Lusztig polynomials. arXiv:2111.15161
[17] Brenti F (1998) Kazhdan-Lusztig and \(R\)-polynomials from a combinatorial point of view. vol 193, pp 93-116. Selected papers in honor of Adriano Garsia (Taormina, 1994) · Zbl 1061.05511
[18] Bridgeland, T., Stability conditions on triangulated categories, Ann Math (2), 166, 2, 317-345, (2007) · Zbl 1137.18008
[19] Bruhat, F., Représentations induites des groupes de Lie semi-simples complexes, C R Acad Sci Paris, 238, 437-439, (1954) · Zbl 0055.02003
[20] Burrull G, Libedinsky N, Plaza D (2021) Combinatorial invariance conjecture for \(\widetilde{A}_2\). arXiv:2105.04609
[21] Burrull, G.; Libedinsky, N.; Sentinelli, P., \(p\)-Jones-Wenzl idempotents, Adv Math, 352, 246-264, (2019) · Zbl 1498.20026
[22] Chari, V.; Pressley, A., A guide to quantum groups, (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0839.17009
[23] Chen, ER; Engel, M.; Glotzer, SC, Dense crystalline dimer packings of regular tetrahedra, Discrete Comput Geom, 44, 2, 253-280, (2010) · Zbl 1200.52011
[24] Chevalley, C., Sur certains groupes simples, Tohoku Math J, 2, 7, 14-66, (1955) · Zbl 0066.01503
[25] Ciappara J (2021) Hecke category actions via Smith-Treumann theory. arXiv:2103.07091
[26] Connes, A.; Consani, C., Characteristic 1, entropy and the absolute point. Noncommutative geometry. Arithmetic, and related topics, 75-139, (2011), Baltimore: Johns Hopkins Univ. Press, Baltimore · Zbl 1273.11140
[27] Crane, L., Clock and category: is quantum gravity algebraic?, J Math Phys, 36, 11, 6180-6193, (1995) · Zbl 0848.57035
[28] Crane L, Frenkel IB (1994) Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. vol 35, pp 5136-5154. Topology and physics · Zbl 0892.57014
[29] Davies, A.; Velickovic, P.; Buesing, L.; Blackwell, S.; Zheng, D.; Tomašev, N.; Tanburn, R.; Battaglia, P.; Blundell, C.; Juhasz, A.; Lackenby, M.; Williamson, G.; Hassabis, D.; Kohli, P., Advancing mathematics by guiding human intuition with AI, Nature, 600, 70-74, (2021) · Zbl 1505.57001
[30] Deligne P (2007) La catégorie des représentations du groupe symétrique \(S_t\), lorsque \(t\) n’est pas un entier naturel. In: Algebraic groups and homogeneous spaces, volume 19 of Tata Inst. Fund. Res. Stud. Math.. Tata Inst. Fund. Res., Mumbai, pp 209-273 · Zbl 1165.20300
[31] Deninger, C., Local \(L\)-factors of motives and regularized determinants, Invent Math, 107, 1, 135-150, (1992) · Zbl 0762.14015
[32] Diaconis P (1988) Group representations in probability and statistics, vol 11. Institute of Mathematical Statistics Lecture Notes-Monograph Series. Institute of Mathematical Statistics, Hayward · Zbl 0695.60012
[33] Dieudonné J (1977) Panorama des mathématiques pures. Gauthier-Villars, Paris. Le choix bourbachique. [The Bourbakian choice] · Zbl 0482.00002
[34] Dipper, R.; James, G., \(q\)-tensor space and \(q\)-Weyl modules, Trans Am Math Soc, 327, 1, 251-282, (1991) · Zbl 0798.20009
[35] Drinfel’d V (1987) Quantum groups. In: Proceedings of the International Congress of Mathematicians, vol 1, 2 (Berkeley, Calif., 1986). Amer. Math. Soc., Providence, pp 798-820 · Zbl 0667.16003
[36] Elias B (2014) Quantum Satake in type a: part I. arXiv:1403.5570
[37] Elias B (2015) Light ladders and clasp conjectures. arXiv:1510.06840
[38] Elias, B., Thicker Soergel calculus in type \(A\), Proc Lond Math Soc (3), 112, 5, 924-978, (2016) · Zbl 1388.20011
[39] Elias, B., The two-color Soergel calculus, Compos Math, 152, 2, 327-398, (2016) · Zbl 1382.20006
[40] Elias B, Khovanov M (2010) Diagrammatics for Soergel categories. Int J Math Math Sci. Art. ID 978635, 58 · Zbl 1219.18003
[41] Elias, B.; Libedinsky, N., Indecomposable Soergel bimodules for universal Coxeter groups, Trans Am Math Soc, 369, 6, 3883-3910, (2017) · Zbl 1435.20009
[42] Elias, B.; Williamson, G., The Hodge theory of Soergel bimodules, Ann Math (2), 180, 3, 1089-1136, (2014) · Zbl 1326.20005
[43] Elias, B.; Williamson, G., Soergel calculus, Represent Theory, 20, 295-374, (2016) · Zbl 1427.20006
[44] Elias, B.; Williamson, G., Relative hard Lefschetz for Soergel bimodules, J Eur Math Soc (JEMS), 23, 8, 2549-2581, (2021) · Zbl 1475.20006
[45] Elias, B.; Makisumi, S.; Thiel, U.; Williamson, G., Introduction to Soergel bimodules, volume 5 of RSME springer series, (2020), Cham: Springer, Cham · Zbl 1507.20001
[46] Freudenthal, H.; de Vries, H., Linear Lie groups. Pure and applied mathematics, (1969), New York-London: Academic Press, New York-London · Zbl 0377.22001
[47] Gerstenhaber, M., On the deformation of rings and algebras, Ann Math, 2, 79, 59-103, (1964) · Zbl 0123.03101
[48] Gobet, T.; Thiel, A-L, A Soergel-like category for complex reflection groups of rank one, Math Z, 295, 1-2, 643-665, (2020) · Zbl 1481.20139
[49] Gowers, T.; Barrow-GJ, Leader I., The Princeton companion to mathematics, (2008), Princeton: Princeton University Press, Princeton · Zbl 1242.00016
[50] Howlett, R.; Lehrer, G., Induced cuspidal representations and generalised Hecke rings, Invent Math, 58, 1, 37-64, (1980) · Zbl 0435.20023
[51] Huh J (2018) Combinatorial applications of the Hodge-Riemann relations. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, pp 3093-3111. World Sci. Publ., Hackensack · Zbl 1448.05016
[52] Iwahori, N., On the structure of a Hecke ring of a Chevalley group over a finite field, J Fac Sci Univ Tokyo Sect, I, 10, 215-236, (1964) · Zbl 0135.07101
[53] Iwahori, N.; Matsumoto, H., On some Bruhat decomposition and the structure of the Hecke rings of \(p\)-adic Chevalley groups, Inst Hautes Études Sci Publ Math, 25, 5-48, (1965) · Zbl 0228.20015
[54] James G, Kerber A (1981) The representation theory of the symmetric group, volume 16 of encyclopedia of mathematics and its applications. Addison-Wesley Publishing Co., Reading, Mass. With a foreword by P. M. Cohn, With an introduction by Gilbert de B. Robinson · Zbl 0491.20010
[55] Jensen, LT, The 2-braid group and Garside normal form, Math Z, 286, 1-2, 491-520, (2017) · Zbl 1423.20031
[56] Jensen LT (2021) Correction of the Lusztig-Williamson billiards conjecture. arXiv:2105.04665
[57] Jensen LT, Williamson G (2017) The \(p\)-canonical basis for Hecke algebras. In: Categorification and higher representation theory, volume 683 of contemp. math., pp 333-361. Amer. Math. Soc., Providence · Zbl 1390.20001
[58] Jimbo, M., A \(q\)-analogue of \(U({\mathfrak{gl}}(N+1))\), Hecke algebra, and the Yang-Baxter equation, Lett Math Phys, 11, 3, 247-252, (1986) · Zbl 0602.17005
[59] Jones, VFR, A polynomial invariant for knots via von Neumann algebras, Bull Am Math Soc (NS), 12, 1, 103-111, (1985) · Zbl 0564.57006
[60] Joyal, A.; Street, R., Braided tensor categories, Adv Math, 102, 1, 20-78, (1993) · Zbl 0817.18007
[61] Joyal, A.; Street, R., The category of representations of the general linear groups over a finite field, J Algebra, 176, 3, 908-946, (1995) · Zbl 0833.18004
[62] Kamada, S., Braid and knot theory in dimension four, volume 95 of mathematical surveys and monographs, (2002), Providence: American Mathematical Society, Providence · Zbl 0993.57012
[63] Kassel C, Turaev V (2008) Braid groups, volume 247 of graduate texts in mathematics. Springer, New York. With the graphical assistance of Olivier Dodane
[64] Kazhdan, D.; Lusztig, G., Representations of Coxeter groups and Hecke algebras, Invent Math, 53, 2, 165-184, (1979) · Zbl 0499.20035
[65] Khovanov, M., Triply-graded link homology and Hochschild homology of Soergel bimodules, Int J Math, 18, 8, 869-885, (2007) · Zbl 1124.57003
[66] Khovanov, M.; Seidel, P., Quivers, Floer cohomology, and braid group actions, J Am Math Soc, 15, 1, 203-271, (2002) · Zbl 1035.53122
[67] Khovanov M, Sitaraman M, Tubbenhauer D (2022) Monoidal categories, representation gap and cryptography. arXiv:2201.01805
[68] Kostant, B., A formula for the multiplicity of a weight, Trans Am Math Soc, 93, 53-73, (1959) · Zbl 0131.27201
[69] Kurokawa N (1992) Multiple zeta functions: an example. In: Zeta functions in geometry (Tokyo, 1990), volume 21 of adv. stud. pure math.. Kinokuniya, Tokyo, pp 219-226 · Zbl 0795.11037
[70] Lascoux, A.; Schützenberger, M-P, Sur une conjecture de H. O. Foulkes, C R Acad Sci Paris Sér A-B, 286, 7, A323-A324, (1978) · Zbl 0374.20010
[71] Lascoux, A.; Leclerc, B.; Thibon, J-Y, Crystal graphs and \(q\)-analogues of weight multiplicities for the root system \(A_n\), Lett Math Phys, 35, 4, 359-374, (1995) · Zbl 0854.17014
[72] Libedinsky N (2008) Auteur de la catégorie des bimodules de Soergel. Thèse de Doctorat Université Paris 7
[73] Libedinsky, N., Équivalences entre conjectures de Soergel, J Algebra, 320, 7, 2695-2705, (2008) · Zbl 1197.20004
[74] Libedinsky, N., Sur la catégorie des bimodules de Soergel, J Algebra, 320, 7, 2675-2694, (2008) · Zbl 1196.20005
[75] Libedinsky, N., Presentation of right-angled Soergel categories by generators and relations, J Pure Appl Algebra, 214, 12, 2265-2278, (2010) · Zbl 1252.20002
[76] Libedinsky, N., New bases of some Hecke algebras via Soergel bimodules, Adv Math, 228, 2, 1043-1067, (2011) · Zbl 1243.20007
[77] Libedinsky, N., Light leaves and Lusztig’s conjecture, Adv Math, 280, 772-807, (2015) · Zbl 1410.20008
[78] Libedinsky, N., Gentle introduction to Soergel bimodules I: the basics, São Paulo J Math Sci, 13, 2, 499-538, (2019) · Zbl 1473.20008
[79] Libedinsky N, Patimo L (2020) On the affine Hecke category for \(sl_3\). arXiv:2005.02647
[80] Libedinsky, N.; Williamson, G., Standard objects in 2-braid groups, Proc Lond Math Soc (3), 109, 5, 1264-1280, (2014) · Zbl 1316.20046
[81] Libedinsky N, Williamson G (2017) The anti-spherical category. arXiv:1702.00459
[82] Libedinsky, N.; Williamson, G., Kazhdan-Lusztig polynomials and subexpressions, J Algebra, 568, 181-192, (2021) · Zbl 1458.20036
[83] Libedinsky N, Patimo L, Plaza D (2021) Pre-canonical bases. arXiv:2103.06903
[84] Littelmann, P., Paths and root operators in representation theory, Ann Math (2), 142, 3, 499-525, (1995) · Zbl 0858.17023
[85] Loeb, D., Sets with a negative number of elements, Adv Math, 91, 1, 64-74, (1992) · Zbl 0767.05005
[86] Lopez Peña J, Lorscheid O (2011) Mapping \({}_1\)-land: an overview of geometries over the field with one element. In: Noncommutative geometry, arithmetic, and related topics. Johns Hopkins Univ. Press, Baltimore, pp 241-265 · Zbl 1271.14003
[87] Lusztig G (2010) Bruhat decomposition and applications. arXiv:1006.5004
[88] Lusztig G, Williamson G (2018) Billiards and tilting characters for \({\rm SL}_3\). SIGMA Symmetry Integr Geom Methods Appl 14:Paper No. 015, 22 · Zbl 1447.20007
[89] Makisumi, S., On monoidal Koszul duality for the Hecke category, Rev Colombiana Mat, 53, suppl., 195-222, (2019) · Zbl 1472.20006
[90] Manin Y (1992) Lectures on zeta functions and motives (according to Deninger and Kurokawa). vol 228, pp 121-163. 1995. Columbia University Number Theory Seminar (New York) · Zbl 0840.14001
[91] Maschke, H., Über den arithmetischen Charakter der Coefficienten der Substitutionen endlicher linearer Substitutionsgruppen, Math Ann, 50, 4, 492-498, (1898) · JFM 29.0114.03
[92] Matsumoto, H., Générateurs et relations des groupes de Weyl généralisés, C R Acad Sci Paris, 258, 3419-3422, (1964) · Zbl 0128.25202
[93] Mirković, I.; Vilonen, K., Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann Math (2), 166, 1, 95-143, (2007) · Zbl 1138.22013
[94] Palais, R.; Stewart, T., Deformations of compact differentiable transformation groups, Am J Math, 82, 935-937, (1960) · Zbl 0106.16401
[95] Patimo L (2021) Charges via the Affine Grassmannian. arXiv:2106.02564
[96] Plaza, D., Graded cellularity and the monotonicity conjecture, J Algebra, 473, 324-351, (2017) · Zbl 1371.20005
[97] Plaza, D., Diagrammatics for Kazhdan-Lusztig \(\widetilde{R} \)-polynomials, Eur J Combin, 79, 193-213, (2019) · Zbl 1414.05309
[98] Propp J (2003) Exponentiation and Euler measure. vol 49, pp 459-471. Dedicated to the memory of Gian-Carlo Rota · Zbl 1090.05003
[99] References for Kazhdan-Lusztig theory. https://www.math.ucdavis.edu/ vazirani/S05/KL.details.html. Accessed: 2021-11-15
[100] Riche S, Williamson G (2018) Tilting modules and the \(p\)-canonical basis. Astérisque (397):ix+184 · Zbl 1437.20001
[101] Rouquier R (2006) Categorification of \({\mathfrak{sl}}_2\) and braid groups. In: Trends in representation theory of algebras and related topics, volume 406 of contemp. math.. Amer. Math. Soc., Providence, pp 137-167 · Zbl 1162.20301
[102] Sahi, S., A new formula for weight multiplicities and characters, Duke Math J, 101, 1, 77-84, (2000) · Zbl 0953.17003
[103] Schanuel SH (1991) Negative sets have Euler characteristic and dimension. In: Category theory (Como, 1990), volume 1488 of lecture notes in math.. Springer, Berlin, pp 379-385 · Zbl 0748.18005
[104] Schützer, W., A new character formula for Lie algebras and Lie groups, J Lie Theory, 22, 3, 817-838, (2012) · Zbl 1284.17005
[105] Senechal, M., Which tetrahedra fill space?, Math Mag, 54, 5, 227-243, (1981) · Zbl 0469.51017
[106] Sentinelli, P., Artin group injection in the Hecke algebra for right-angled groups, Geom Dedicata, 214, 193-210, (2021) · Zbl 1542.20036
[107] Serre, J-P, Géométrie algébrique et géométrie analytique, Ann Inst Fourier (Grenoble), 6, 1-42, (1955) · Zbl 0075.30401
[108] Shimura, G., Sur les intégrales attachées aux formes automorphes, J Math Soc Jpn, 11, 291-311, (1959) · Zbl 0090.05503
[109] Shimura, G., André Weil as I knew him, Not Am Math Soc, 46, 4, 428-433, (1999) · Zbl 1194.01140
[110] Soergel, W., The combinatorics of Harish-Chandra bimodules, J Reine Angew Math, 429, 49-74, (1992) · Zbl 0745.22014
[111] Soergel W (1998) On the relation between intersection cohomology and representation theory in positive characteristic, vol 152, pp 311-335. 2000. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome) · Zbl 1101.14302
[112] Soergel, W., Kazhdan-Lusztig-Polynome und unzerlegbare Bimoduln über Polynomringen, J Inst Math Jussieu, 6, 3, 501-525, (2007) · Zbl 1192.20004
[113] Soulé, C., Les variétés sur le corps à un élément, Mosc Math J, 4, 1, 217-244, (2004) · Zbl 1103.14003
[114] Steinberg, R., A geometric approach to the representations of the full linear group over a Galois field, Trans Am Math Soc, 71, 274-282, (1951) · Zbl 0045.30201
[115] Steinberg, R., Representations of algebraic groups, Nagoya Math J, 22, 33-56, (1963) · Zbl 0271.20019
[116] Sutton L, Tubbenhauer D, Wedrich P, Zhu J \((2021) {S}{L}_2\) tilting modules in the mixed case. arXiv:2105.07724
[117] Tits J (1957) Sur les analogues algébriques des groupes semi-simples complexes. In: Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, pp 261-289. Établissements Ceuterick, Louvain, Librairie Gauthier-Villars, Paris · Zbl 0084.15902
[118] Weyl, H., Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. I, Math Z, 23, 1, 271-309, (1925)
[119] Williamson, G., Schubert calculus and torsion explosion, J Am Math Soc, 30, 4, 1023-1046, (2017) · Zbl 1380.20015
[120] Williamson, G.; Braden, T., Modular intersection cohomology complexes on flag varieties, Math Z, 272, 3-4, 697-727, (2012) · Zbl 1284.14031
[121] Yale, PB, Automorphisms of the complex numbers, Math Mag, 39, 3, 135-141, (1966) · Zbl 0156.27502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.