×

Towards combinatorial invariance for Kazhdan-Lusztig polynomials. (English) Zbl 1509.20057

With every pair of elements in a Coxeter group, a polynomial with integer coefficients is associated which is known as the Kazhdan-Lusztig polynomial, and it was introduced in the fundamental paper [D. Kazhdan and G. Lusztig, Invent. Math. 53, 165–184 (1979; Zbl 0499.20035)]. In that paper, the nonnegativity of the coefficients of the polynomial was conjectured, and this was proved in, e.g. [B. Elias and G. Williamson, Ann. Math. (2) 180, No. 3, 1089–1136 (2014; Zbl 1326.20005)]. The Kazhdan-Lusztig polynomials codify important information to understand the Bruhat order of Coxeter groups and the geometry of Schubert varietes.
Lusztig (1983) and Dyer (1987) conjectured that the K-L polynomial associated with the two elements \(x\) and \(y\), depends only of the Bruhat inverval \([x,y]\); this is known as the combinatorial invariance conjecture. In the present work, the authors provide a new combinatorial formula for the K-L polynomials of symmetric groups. Their formula suggests a feasible approach to the combinatorial invariance conjecture for symmetric groups. Along the paper, they introduce the notion of an hypercube decomposition and propose an interesting conjecture related to this new concept.
Recommended introductions are [B. Elias et al., Introduction to Soergel bimodules. Cham: Springer (2020; Zbl 1507.20001); N. Xi, Sci. Sin., Math. 47, No. 11, 1467–1480 (2017; Zbl 1499.20005); F. Brenti, Sémin. Lothar. Comb. 49, B49b, 30 p. (2002; Zbl 1036.20037)]. See also [N. Libedinsky and G. Williamson, J. Algebra 568, 181–192 (2021; Zbl 1458.20036); D. Bump and M. Nakasuji, Can. J. Math. 71, No. 6, 1351–1366 (2019; Zbl 1459.22004); N. Proudfoot, EMS Surv. Math. Sci. 5, No. 1–2, 99–127 (2018; Zbl 1445.14038); M. Marietti, Trans. Am. Math. Soc. 368, No. 7, 5247–5269 (2016; Zbl 1331.05232); B. Elias and G. Williamson, Prog. Math. 319, 105–126 (2016; Zbl 1367.20002); A. Björner and T. Ekedahl, Ann. Math. (2) 170, No. 2, 799–817 (2009; Zbl 1226.05268); J. Brundan, J. Algebra 306, No. 1, 17–46 (2006; Zbl 1169.17008); F. Caselli, J. Algebr. Comb. 18, No. 3, 171–187 (2003; Zbl 1067.05078); F. Brenti and R. Simion, J. Algebr. Comb. 11, No. 3, 187–196 (2000; Zbl 0958.05138); P. Polo, Represent. Theory 3, 90–104 (1999; Zbl 0968.14029); F. Brenti, Discrete Math. 193, No. 1–3, 93–116 (1998; Zbl 1061.05511); Invent. Math. 118, No. 2, 371–394 (1994; Zbl 0836.20054); V. V. Deodhar, Contemp. Math. 88, 579–583 (1989; Zbl 0685.17011); B. Elias et al., Adv. Math. 299, 36–70 (2016; Zbl 1341.05250)].

MSC:

20F55 Reflection and Coxeter groups (group-theoretic aspects)
20C08 Hecke algebras and their representations
05E10 Combinatorial aspects of representation theory

References:

[1] Bj\"{o}rner, Anders, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, xiv+363 pp. (2005), Springer, New York · Zbl 1110.05001
[2] Brenti, Francesco, Special matchings and Kazhdan-Lusztig polynomials, Adv. Math., 555-601 (2006) · Zbl 1091.05075 · doi:10.1016/j.aim.2005.01.011
[3] Billey, Sara C., Pattern avoidance and rational smoothness of Schubert varieties, Adv. Math., 141-156 (1998) · Zbl 0936.14036 · doi:10.1006/aima.1998.1744
[4] Bernstein, Joseph, Equivariant sheaves and functors, Lecture Notes in Mathematics, iv+139 pp. (1994), Springer-Verlag, Berlin · Zbl 0808.14038 · doi:10.1007/BFb0073549
[5] G. Burrull, N. Libedinsky, and D. Plaza, Combinatorial invariance conjecture for \(\widetilde A_2, 2105.04609, 2021\).
[6] Braden, Tom, From moment graphs to intersection cohomology, Math. Ann., 533-551 (2001) · Zbl 1077.14522 · doi:10.1007/s002080100232
[7] Braden, Tom, Hyperbolic localization of intersection cohomology, Transform. Groups, 209-216 (2003) · Zbl 1026.14005 · doi:10.1007/s00031-003-0606-4
[8] Brenti, Francesco, Kazhdan-Lusztig polynomials: history problems, and combinatorial invariance, S\'{e}m. Lothar. Combin., Art. B49b, 30 pp. (2002/04) · Zbl 1036.20037
[9] Brenti, Francesco, The intersection cohomology of Schubert varieties is a combinatorial invariant, European J. Combin., 1151-1167 (2004) · Zbl 1064.14062 · doi:10.1016/j.ejc.2003.10.011
[10] Brion, Michel, Representation theories and algebraic geometry. Equivariant cohomology and equivariant intersection theory, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 1-37 (1997), Kluwer Acad. Publ., Dordrecht · Zbl 0946.14008
[11] Carrell, James B., Algebraic groups and their generalizations: classical methods. The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Proc. Sympos. Pure Math., 53-61 (1991), Amer. Math. Soc., Providence, RI · Zbl 0818.14020
[12] A. Davies, P. Velickovi\'c, L. Buesing, S. Blackwell, D. Zheng, N. Tomasev, R. Tanburn, P. Battaglia, C. Blundell, A. Juhasz, M. Lackenby, G. Williamson, D. Hassabis, and P. Kohli, Advancing mathematics by guiding human intuition with AI, Nature 600 (2021), no. 7887, 70-74 · Zbl 1505.57001
[13] M. Dyer, Hecke algebras and reflections in Coxeter groups, Ph.D. Thesis, University of Sydney, 1987.
[14] Dyer, M. J., The nil Hecke ring and Deodhar’s conjecture on Bruhat intervals, Invent. Math., 571-574 (1993) · Zbl 0813.20043 · doi:10.1007/BF01231299
[15] Elias, Ben, Introduction to Soergel bimodules, RSME Springer Series, xxv+588 pp. ([2020] ©2020), Springer, Cham · Zbl 1507.20001 · doi:10.1007/978-3-030-48826-0
[16] Fulton, William, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J., 381-420 (1992) · Zbl 0788.14044 · doi:10.1215/S0012-7094-92-06516-1
[17] Fiebig, Peter, Parity sheaves, moment graphs and the \(p\)-smooth locus of Schubert varieties, Ann. Inst. Fourier (Grenoble), 489-536 (2014) · Zbl 1336.14011
[18] Gel\cprime fand, I. M., Combinatorial geometries and the strata of a torus on homogeneous compact manifolds, Uspekhi Mat. Nauk, 107-134, 287 (1987) · Zbl 0629.14035
[19] Joel Gibson, LieVis: Interactive visualisations in Lie theory, in preparation (2022), software available at https://www.jgibson.id.au/lievis/https://www.jgibson.id.au/lievis/.
[20] Humphreys, James E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, xii+204 pp. (1990), Cambridge University Press, Cambridge · Zbl 0725.20028 · doi:10.1017/CBO9780511623646
[21] Incitti, Federico, On the combinatorial invariance of Kazhdan-Lusztig polynomials, J. Combin. Theory Ser. A, 1332-1350 (2006) · Zbl 1105.05073 · doi:10.1016/j.jcta.2005.12.003
[22] Irving, Ronald S., The socle filtration of a Verma module, Ann. Sci. \'{E}cole Norm. Sup. (4), 47-65 (1988) · Zbl 0706.17006
[23] Kazhdan, David, Representations of Coxeter groups and Hecke algebras, Invent. Math., 165-184 (1979) · Zbl 0499.20035 · doi:10.1007/BF01390031
[24] Kazhdan, David, Geometry of the Laplace operator. Schubert varieties and Poincar\'{e} duality, Proc. Sympos. Pure Math., XXXVI, 185-203 (1979), Amer. Math. Soc., Providence, R.I. · Zbl 0461.14015
[25] Lakshmibai, V., Singular locus of a Schubert variety, Bull. Amer. Math. Soc. (N.S.), 363-366 (1984) · Zbl 0549.14016 · doi:10.1090/S0273-0979-1984-15309-6
[26] Patimo, Leonardo, A combinatorial formula for the coefficient of \(q\) in Kazhdan-Lusztig polynomials, Int. Math. Res. Not. IMRN, 3203-3223 (2021) · Zbl 1470.05170 · doi:10.1093/imrn/rnz255
[27] Saito, Morihiko, Introduction to mixed Hodge modules, Ast\'{e}risque, 10, 145-162 (1989) · Zbl 0753.32004
[28] Schnell, Christian, Representation theory, automorphic forms & complex geometry. An overview of Morihiko Saito’s theory of mixed Hodge modules, 27-80 ([2019] ©2019), Int. Press, Somerville, MA · Zbl 1527.32024
[29] Soergel, W., \( \mathfrak{n} \)-cohomology of simple highest weight modules on walls and purity, Invent. Math., 565-580 (1989) · Zbl 0781.22011 · doi:10.1007/BF01393837
[30] Soergel, Wolfgang, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory, 83-114 (1997) · Zbl 0886.05123 · doi:10.1090/S1088-4165-97-00021-6
[31] Springer, T. A., A purity result for fixed point varieties in flag manifolds, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 271-282 (1984) · Zbl 0581.20048
[32] Woo, Alexander, Governing singularities of Schubert varieties, J. Algebra, 495-520 (2008) · Zbl 1152.14046 · doi:10.1016/j.jalgebra.2007.12.016
[33] Woo, Alexander, A Gr\"{o}bner basis for Kazhdan-Lusztig ideals, Amer. J. Math., 1089-1137 (2012) · Zbl 1262.13044 · doi:10.1353/ajm.2012.0031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.