×

(Anti) de Sitter geometry, complex conformal gravity-Maxwell theory from a \(Cl(4, C)\) gauge theory of gravity and grand unification. (English) Zbl 1526.15024

Summary: We present the deep connections among (Anti) de Sitter geometry, and complex conformal gravity-Maxwell theory, stemming directly from a gauge theory of gravity based on the complex Clifford algebra \(Cl(4, C)\). This is attained by simply promoting the de (Anti) Sitter algebras \(so(4, 1)\), \(so(3, 2)\) to the real Clifford algebras \(Cl(4, 1, R)\), \(Cl(3, 2, R)\), respectively. This interplay between gauge theories of gravity based on \(Cl(4, 1, R)\), \(Cl(3, 2, R)\) , whose bivector-generators encode the de (Anti) Sitter algebras \(so(4, 1)\), \(so(3, 2)\), respectively, and \(4D\) conformal gravity based on \(Cl(3, 1, R)\) is reminiscent of the \(AdS_{D+1}/CFT_D\) correspondence between \(D+1\)-dim gravity in the bulk and conformal field theory in the \(D\)-dim boundary. Although a plausible cancellation mechanism of the cosmological constant terms appearing in the real-valued curvature components associated with complex conformal gravity is possible, it does not occur simultaneously in the imaginary curvature components. Nevertheless, by including a Lagrange multiplier term in the action, it is still plausible that one might be able to find a restricted set of on-shell field configurations leading to a cancellation of the cosmological constant in curvature-squared actions due to the coupling among the real and imaginary components of the vierbein. We finalize with a brief discussion related to \(U(4) \times U(4)\) grand-unification models with gravity based on \(Cl(5, C) = Cl(4, C) \oplus Cl(4, C)\). It is plausible that these grand-unification models could also be traded for models based on \(GL(4, C)\times GL(4, C)\).

MSC:

15A67 Applications of Clifford algebras to physics, etc.
15A66 Clifford algebras, spinors
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
81V22 Unified quantum theories
83C22 Einstein-Maxwell equations
Full Text: DOI

References:

[1] Alexander, S., Manton, T.: Pure gauge theory for the gravitational spin connection. arXiv:2212.05069
[2] Alvarez, E., Velasco-Aja, E.: A primer on unimodular gravity. arXiv:2301.07641
[3] Becker, K.; Becker, M.; Schwarz, J., String Theory and M-Theory : A Modern Introduction, 543-545 (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1123.81001
[4] Cahill, K.; Ozenli, S., Unitary gauge theories of noncompact groups, Phys. Rev. D, 27, 1396 (1983) · doi:10.1103/PhysRevD.27.1396
[5] Castro, C.: \(R \otimes C \otimes H \otimes O\)-valued gravity as a grand unified field theory. Adv. Appl. Clifford Algebras 29(22) (2019) · Zbl 1410.81034
[6] Castro, C., On Born’s deformed reciprocal complex gravitational theory and noncommutative gravity, Phys. Lett. B, 668, 442 (2008) · doi:10.1016/j.physletb.2008.08.066
[7] Castro, C., A Clifford algebra based grand unification program of gravity and the standard model: a review study, Can. J. Phys., 92, 12, 1501 (2014) · doi:10.1139/cjp-2013-0686
[8] Castro, C.; Pavsic, M., On Clifford algebras of spacetime and the Conformal Group, Int. J. Theor. Phys., 42, 1693 (2003) · Zbl 1034.83002 · doi:10.1023/A:1026123119587
[9] Castro, C.; Pavsic, M., The extended relativity theory in Clifford-spaces, Prog. Phys., 1, 31 (2005) · Zbl 1278.83039
[10] Chamseddine, A., \(SL(2, C)\) gravity with a complex vierbein and its noncommutative extension, Phys. Rev. D, 69 (2004) · doi:10.1103/PhysRevD.69.024015
[11] Chamseddine, A.; West, P., Supergravity as a gauge theory of supersymmetry, Nucl. Phys. B, 129, 39 (1977) · doi:10.1016/0550-3213(77)90018-9
[12] Ghilencea, D.M., Hill, C.T.: Standard Model in conformal geometry: local vs gauged scale invariance. arXiv:2303.02515
[13] Ghilencea, D.M.: Non-metric geometry as the origin of mass in gauge theories of scale invariance. arXiv:2203.05381
[14] Gilmore, R., Lie Groups, Lie Algebras and Some of Their Applications (1974), New York: Wiley, New York · Zbl 0279.22001 · doi:10.1063/1.3128987
[15] Hehl, F.; McCrea, J.; Mielke, E.; Ne’eman, Y., Metric-affine gauge theory of gravity: field equations, Noether identities, world spinors, and breaking of dilation invariance, Phys. Rep., 258, 1-171 (1995) · doi:10.1016/0370-1573(94)00111-F
[16] Kaku, M.; Townsend, PK; van Nieuwenhuizen, P., Gauge theory of the conformal and superconformal group, Phys. Lett. B, 69, 304 (1977) · doi:10.1016/0370-2693(77)90552-4
[17] Kumar Aluri, P.; Jain, P.; Singh, NK, Dark energy and dark matter in general relativity with local scale invariance, Mod. Phys. Lett. A, 24, 1583 (2009) · Zbl 1168.83339 · doi:10.1142/S0217732309030060
[18] MacDowell, SW; Mansouri, F., Unified geometric theory of gravity and supergravity, Phys. Rev. Lett, 38, 739 (1977) · doi:10.1103/PhysRevLett.38.739
[19] Mannheim, P.: How to quantize gravity and how not to quantize gravity. arXiv:2209.15047
[20] Margolin, A.; Strazhev, V., Yang-Mills field quantization with a noncompact gauge group, Mod. Phys. Lett. A, 7, 2747 (1992) · Zbl 1021.81952 · doi:10.1142/S0217732392002214
[21] Marques, S.; Oliveira, C., An extension of quaternionic metrics to octonions, J. Math. Phys., 26, 3131 (1985) · Zbl 0583.53060 · doi:10.1063/1.526693
[22] Mohapatra, R., Unification and Supersymmetry: The Frontiers of Quark-Lepton Physics (1986), New York: Springer, New York · doi:10.1007/978-1-4757-1928-4
[23] Mueck, W.: General (anti) commutators of gamma matrices. arXiv:0711.1436
[24] Nink, A., Reuter, M., Saueressig, F.: Asymptotic Safety in quantum gravity. Scholarpedia 8(7), 31015 (2013)
[25] Porteous, IR, Clifford Algebras and Classical Groups (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0855.15019 · doi:10.1017/CBO9780511470912
[26] Rausch de Traubenberg, M.: Clifford Algebras in Physics. arXiv:hep-th/0506011 · Zbl 1182.15015
[27] Rigouzzo, C., Zell, S.: Coupling metric-affine gravity to the standard model and dark matter fermions. arXiv:2306.13134
[28] Scholz, E., MOND-like acceleration in integrable Weyl geometric gravity, Found. Phys., 46, 176 (2016) · Zbl 1335.83018 · doi:10.1007/s10701-015-9960-z
[29] Shaposhnikov, M., Tokareva, A.: Exact quantum conformal symmetry, its spontaneous breakdown, and gravitational Weyl anomaly · Zbl 1522.83453
[30] Weinberg, S., The cosmological constant problem, Rev. Mod. Phys., 61, 1 (1989) · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[31] Yang, J.-Z., Shahidi, S., Harko, T.: Black hole solutions in the quadratic Weyl conformal geometric theory of gravity. arXiv:2212.05542
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.